, Volume 236, Issue 7, pp 2069–2082 | Cite as

Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse

  • Basile Coutens
  • Lionel Mouledous
  • Manta Stella
  • Claire Rampon
  • Maryse Lapeyre-Mestre
  • Anne Roussin
  • Bruno P. GuiardEmail author
  • Emilie Jouanjus
Original Investigation



Pregabalin is a psychoactive drug indicated in the treatment of epilepsy, neuropathic pain, and generalized anxiety disorders. Pregabalin acts on different neurotransmission systems by inactivating the alpha2-delta subunit of voltage-gated calcium channels. In light of this pharmacological property, the hypothesis has been raised that pregabalin may regulate the mesolimbic dopamine pathway and thereby display a potential for misuse or abuse as recently observed in humans. Although some preclinical data support this possibility, the rewarding properties of gabapentinoid are still a matter for debate.


The aim of this work was to evaluate the rewarding properties of pregabalin and to determine its putative mechanism of action in healthy mice.


Pregabalin alone (60 mg/kg; s.c.) produced a rewarding effect in the conditioned place preference (CPP) test albeit to a lower extent than cocaine (30 mg/kg; s.c.). Interestingly, when assessing locomotor activity in the CPP, the PGB60 group, similarly to the cocaine group, showed an increased locomotor activity. In vivo single unit extracellular recording showed that pregabalin had mixed effects on dopamine (DA) neuronal activity in the ventral tegmental area since it decreased the activity of 50% of neurons and increased 28.5% of them. In contrast, cocaine decreased 75% of VTA DA neuronal activity whereas none of the neurons were activated. Intracerebal microdialysis was then conducted in awake freely mice to determine to what extent such electrophysiological parameters influence the extracellular DA concentrations ([DA]ext) in the nucleus accumbens. Although pregabalin failed to modify this parameter, cocaine produced a robust increase (800%) in [DA]ext.


Collectively, these electrophysiological and neurochemical experiments suggest that the rewarding properties of pregabalin result from a different mode of action than that observed with cocaine. Further experiments are warranted to determine whether such undesirable effects can be potentiated under pathological conditions such as neuropathic pain, mood disorders, or addiction and to identify the key neurotransmitter system involved.


Rewarding properties Pregabalin Dopamine VTA Nucleus accumbens 



The authors greatly acknowledge “the Mouse Behavioural Phenotyping Core” (Center of Integrative Biology, Toulouse, France) for its expertise and assistance in setting up behavioral apparatus and procedures.


This independent study did not receive resources from pharmaceutical companies and was funded by the academic collaborating laboratories.

Compliance with ethical standards

All experiments were carried out in accordance with the European guidelines for the care of laboratory animals (European Communities Council Directive 86/609/ECC) and approved by the local Ethics Committee and the French Ministry of Education and Research (APAFIS#6659-2016090512114815 v3).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2019_5198_Fig9_ESM.png (578 kb)
Supplemental Figure 1

Individual distribution of the percentage of time spent in the drug-paired compartment before (D0) and after (D5) conditioning in response to cocaine (30 mg/kg, s.c.) (A) or pregabalin (PGB 60 mg/kg, s.c.). (PNG 577 kb)

213_2019_5198_MOESM1_ESM.tiff (3 mb)
High resolution image (TIFF 3072 kb)


  1. Adell A, Artigas F (2004) The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 28:415–431CrossRefPubMedGoogle Scholar
  2. Aghajanian GK, Bunney BS (1977) Dopamine autoreceptors - pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedeberg's Arch Pharmacol 297:1–7CrossRefGoogle Scholar
  3. Andrews N, Loomis S, Blake R, Ferrigan L, Singh L, McKnight AT (2001) Effect of gabapentin-like compounds on development and maintenance of morphine-induced conditioned place preference. Psychopharmacology 157:381–387CrossRefPubMedGoogle Scholar
  4. Asaoka Y, Kato T, Ide S, Amano T, Minami M (2018) Pregabalin induces conditioned place preference in the rat during the early, but not late, stage of neuropathic pain. Neurosci Lett 668:133–137CrossRefPubMedGoogle Scholar
  5. Ashton H, Young AH (2003) GABA-ergic drugs: exit stage left, enter stage right. J Psychopharmacol 17:174–178CrossRefPubMedGoogle Scholar
  6. Asomaning K, Abramsky S, Liu Q, Zhou X, Sobel RE, Watt S (2016) Pregabalin prescriptions in the United Kingdom: a drug utilisation study of the health improvement network (THIN) primary care database. Int J Clin Pract 70:380–388CrossRefPubMedGoogle Scholar
  7. Balster RL, Bigelow GE (2003) Guidelines and methodological reviews concerning drug abuse liability assessment. Drug Alcohol Depend 70:S13–S40CrossRefPubMedGoogle Scholar
  8. Barik J, Parnaudeau S, Saint Amaux AL, Guiard BP, Golib Dzib JF, Bocquet O, Bailly A, Benecke A, Tronche F (2010) Glucocorticoid receptors in dopaminoreceptive neurons, key for cocaine, are dispensable for molecular and behavioral morphine responses. Biol Psychiatry 68:231–239CrossRefPubMedGoogle Scholar
  9. Ben-Menachem E (2004) Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 45(Suppl 6):13–18CrossRefPubMedGoogle Scholar
  10. Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: an ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80CrossRefPubMedGoogle Scholar
  11. Bonnet U, Scherbaum N (2017) How addictive are gabapentin and pregabalin? A systematic review. Eur Neuropsychopharmacol 27:1185–1215CrossRefPubMedGoogle Scholar
  12. Bossard JB, Ponte C, Dupouy J, Lapeyre-Mestre M, Jouanjus E (2016) Disproportionality analysis for the assessment of abuse and dependence potential of pregabalin in the French pharmacovigilance database. Clin Drug Investig 36:735–742CrossRefPubMedGoogle Scholar
  13. Bradberry CW, Roth RH (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci Lett 103:97–102CrossRefPubMedGoogle Scholar
  14. Bura SA, Cabanero D, Maldonado R (2018) Operant self-administration of pregabalin in a mouse model of neuropathic pain. Eur J Pain 22:763–773CrossRefPubMedGoogle Scholar
  15. Campbell JO, Wood RD, Spear LP (2000) Cocaine and morphine-induced place conditioning in adolescent and adult rats. Physiol Behav 68:487–493CrossRefPubMedGoogle Scholar
  16. Carlezon WA Jr, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology 122:194–197CrossRefPubMedGoogle Scholar
  17. Childs E, de Wit H (2009) Amphetamine-induced place preference in humans. Biol Psychiatry 65:900–904CrossRefPubMedGoogle Scholar
  18. Daneshdoust D, Khalili-Fomeshi M, Ghasemi-Kasman M, Ghorbanian D, Hashemian M, Gholami M, Moghadamnia A, Shojaei A (2017) Pregabalin enhances myelin repair and attenuate glial activation in lysolecithin-induced demyelination model of rat optic chiasm. Neuroscience 344:148–156CrossRefPubMedGoogle Scholar
  19. de Guglielmo G, Cippitelli A, Somaini L, Gerra G, Li H, Stopponi S, Ubaldi M, Kallupi M, Ciccocioppo R (2013) Pregabalin reduces cocaine self-administration and relapse to cocaine seeking in the rat. Addict Biol 18:644–653CrossRefPubMedGoogle Scholar
  20. Di Ciano P, Coury A, Depoortere RY, Egilmez Y, Lane JD, Emmett-Oglesby MW, Lepiane FG, Phillips AG, Blaha CD (1995) Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 6:311–322CrossRefPubMedGoogle Scholar
  21. Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61CrossRefPubMedGoogle Scholar
  22. Di Matteo V, Di Mascio M, Di Giovanni G, Esposito E (2000) Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin 2C receptors. Psychopharmacology 150:45–51CrossRefPubMedGoogle Scholar
  23. Dolphin AC (2013) The alpha2delta subunits of voltage-gated calcium channels. Biochim Biophys Acta 1828:1541–1549CrossRefPubMedGoogle Scholar
  24. Driot D, Chicoulaa B, Jouanjus E, Dupouy J, Oustric S, Lapeyre-Mestre M (2016a) Pregabalin use disorder and secondary nicotine dependence in a woman with no substance abuse history. Therapie 71:575–578CrossRefPubMedGoogle Scholar
  25. Driot D, Jouanjus E, Oustric S, Dupouy J, Lapeyre-Mestre M (2016b) Pattern of gabapentin and pregabalin use and misuse: results of a population-based cohort study. Br J Clin Pharmacol (manuscript ID: MP-00410-18.R2)Google Scholar
  26. Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112CrossRefPubMedGoogle Scholar
  27. Esposito E (2006) Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr Drug Targets 7:177–185CrossRefPubMedGoogle Scholar
  28. Evoy KE, Morrison MD, Saklad SR (2017) Abuse and misuse of pregabalin and gabapentin. Drugs 77:403–426CrossRefPubMedGoogle Scholar
  29. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274CrossRefPubMedPubMedCentralGoogle Scholar
  30. Filipetto FA, Zipp CP, Coren JS (2010) Potential for pregabalin abuse or diversion after past drug-seeking behavior. J Am Osteopath Assoc 110:605–607PubMedGoogle Scholar
  31. Gahr M, Freudenmann RW, Hiemke C, Kolle MA, Schonfeldt-Lecuona C (2013) Pregabalin abuse and dependence in Germany: results from a database query. Eur J Clin Pharmacol 69:1335–1342CrossRefPubMedGoogle Scholar
  32. Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--1. Identification and characterization. Neuroscience 10:301–315CrossRefPubMedGoogle Scholar
  33. Grenhoff J, North RA, Johnson SW (1995) Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. Eur J Neurosci 7:1707–1713CrossRefPubMedGoogle Scholar
  34. Grosshans M, Lemenager T, Vollmert C, Kaemmerer N, Schreiner R, Mutschler J, Wagner X, Kiefer F, Hermann D (2013) Pregabalin abuse among opiate addicted patients. Eur J Clin Pharmacol 69:2021–2025CrossRefPubMedGoogle Scholar
  35. Guiard BP, Chenu F, El Mansari M, Blier P (2011) Characterization of the electrophysiological properties of triple reuptake inhibitors on monoaminergic neurons. Int J Neuropsychopharmacol 14:211–223CrossRefPubMedGoogle Scholar
  36. Hakkinen M, Vuori E, Kalso E, Gergov M, Ojanpera I (2014) Profiles of pregabalin and gabapentin abuse by postmortem toxicology. Forensic Sci Int 241:1–6CrossRefPubMedGoogle Scholar
  37. Hasanein P, Shakeri S (2014) Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats. Eur J Pharmacol 742:113–117CrossRefPubMedGoogle Scholar
  38. Haukka J, Kriikku P, Mariottini C, Partonen T, Ojanpera I (2018) Non-medical use of psychoactive prescription drugs is associated with fatal poisoning. Addiction 113:464–472CrossRefPubMedGoogle Scholar
  39. Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712CrossRefPubMedGoogle Scholar
  40. Hill R, Dewey WL, Kelly E, Henderson G (2018) Oxycodone-induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. Br J Pharmacol 175:2492–2503CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hotsenpiller G, Wolf ME (2002) Conditioned locomotion is not correlated with behavioral sensitization to cocaine: an intra-laboratory multi-sample analysis. Neuropsychopharmacology 27:924–929CrossRefPubMedGoogle Scholar
  42. Hubner CB, Moreton JE (1991) Effects of selective D1 and D2 dopamine antagonists on cocaine self-administration in the rat. Psychopharmacology 105:151–156CrossRefPubMedGoogle Scholar
  43. Kagan L (2014) Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins. Drug Metab Dispos 42:1890–1905CrossRefPubMedGoogle Scholar
  44. Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58CrossRefPubMedGoogle Scholar
  45. Kuczenski R, Segal DS, Aizenstein ML (1991) Amphetamine, cocaine, and fencamfamine - relationship between locomotor and stereotypy response profiles and caudate and accumbens-dopamine dynamics. J Neurosci 11:2703–2712CrossRefPubMedGoogle Scholar
  46. Larson EB, Wissman AM, Loriaux AL, Kourrich S, Self DW (2015) Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci 35:3537–3543CrossRefPubMedPubMedCentralGoogle Scholar
  47. Launiainen T, Broms U, Keskitalo-Vuokko K, Pitkaniemi J, Pelander A, Kaprio J, Ojanpera I (2011) Nicotine, alcohol, and drug findings in young adults in a population-based postmortem database. Nicotine Tob Res 13:763–771CrossRefPubMedGoogle Scholar
  48. Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F, Cui M, Hoffman D, Donevan S (2011) Pregabalin is a potent and selective ligand for alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J Pharmacol 667:80–90CrossRefPubMedGoogle Scholar
  49. Marie N, Noble F (2012) Drug dependence: progress in neurobiology and perspectives in therapeutics. Presse Med 41:1259–1270CrossRefPubMedGoogle Scholar
  50. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloëz-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Fabre P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107CrossRefPubMedGoogle Scholar
  51. Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT (2014) Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82:1346–1356CrossRefPubMedPubMedCentralGoogle Scholar
  52. Olaizola I, Ellger T, Young P, Bosebeck F, Evers S, Kellinghaus C (2006) Pregabalin-associated acute psychosis and epileptiform EEG-changes. Seizure 15:208–210CrossRefPubMedGoogle Scholar
  53. Oosterhof CA, El Mansari M, Blier P (2014) Acute effects of brexpiprazole on serotonin, dopamine, and norepinephrine systems: an in vivo electrophysiologic characterization. J Pharmacol Exp Ther 351:585–595CrossRefPubMedGoogle Scholar
  54. Papazisis G, Garyfallos G, Sardeli C, Kouvelas D (2013) Pregabalin abuse after past substance-seeking behavior. Int J Clin Pharmacol Ther 51:441–442CrossRefPubMedGoogle Scholar
  55. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  56. Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330CrossRefPubMedGoogle Scholar
  57. Pettit HO, Justice JB Jr (1991) Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539:94–102CrossRefPubMedGoogle Scholar
  58. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173CrossRefPubMedGoogle Scholar
  59. Richardson NR, Piercey MF, Svensson K, Collins RJ, Myers JE, Roberts DC (1993) Antagonism of cocaine self-administration by the preferential dopamine autoreceptor antagonist, (+)-AJ 76. Brain Res 619:15–21CrossRefPubMedGoogle Scholar
  60. Roberts DC, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904CrossRefPubMedGoogle Scholar
  61. Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620CrossRefPubMedGoogle Scholar
  62. Rutten K, De Vry J, Robens A, Tzschentke TM, van der Kam EL (2011) Dissociation of rewarding, anti-aversive and anti-nociceptive effects of different classes of anti-nociceptives in the rat. Eur J Pain 15:299–305CrossRefPubMedGoogle Scholar
  63. Schifano F, D'Offizi S, Piccione M, Corazza O, Deluca P, Davey Z, Di Melchiorre G, Di Furia L, Farre M, Flesland L, Mannonen M, Majava A, Pagani S, Peltoniemi T, Siemann H, Skutle A, Torrens M, Pezzolesi C, van der Kreeft P, Scherbaum N (2011) Is there a recreational misuse potential for pregabalin? Analysis of anecdotal online reports in comparison with related gabapentin and clonazepam data. Psychother Psychosom 80:118–122CrossRefPubMedGoogle Scholar
  64. Schjerning O, Pottegard A, Damkier P, Rosenzweig M, Nielsen J (2016) Use of pregabalin - a nationwide pharmacoepidemiological drug utilization study with focus on abuse potential. Pharmacopsychiatry 49:155–161CrossRefPubMedGoogle Scholar
  65. Schwan S, Sundstrom A, Stjernberg E, Hallberg E, Hallberg P (2010) A signal for an abuse liability for pregabalin--results from the Swedish spontaneous adverse drug reaction reporting system. Eur J Clin Pharmacol 66:947–953CrossRefPubMedGoogle Scholar
  66. Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW (1998) The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol 9:195–206PubMedGoogle Scholar
  67. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003–8015CrossRefPubMedGoogle Scholar
  68. Stopponi S, Somaini L, Cippitelli A, de Guglielmo G, Kallupi M, Cannella N, Gerra G, Massi M, Ciccocioppo R (2012) Pregabalin reduces alcohol drinking and relapse to alcohol seeking in the rat. Psychopharmacology 220:87–96CrossRefPubMedGoogle Scholar
  69. Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150CrossRefPubMedGoogle Scholar
  70. Taylor AMW, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, Xue L, Olmstead MC, De Koninck Y, Evans CJ, Cahill CM (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35(22):8442–8450CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tsukada H, Harada N, Nishiyama S, Ohba H, Kakiuchi T (2000) Dose-response and duration effects of acute administrations of cocaine and GBR12909 on dopamine synthesis and transporter in the conscious monkey brain: PET studies combined with microdialysis. Brain Res 860:141–148CrossRefPubMedGoogle Scholar
  72. Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7:21–26CrossRefPubMedGoogle Scholar
  73. Vashchinkina E, Piippo O, Vekovischeva O, Krupitsky E, Ilyuk R, Neznanov N, Kazankov K, Zaplatkin I, Korpi ER (2018) Addiction-related interactions of pregabalin with morphine in mice and humans: reinforcing and inhibiting effects. Addict Biol 23:945–958CrossRefPubMedGoogle Scholar
  74. Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725CrossRefPubMedGoogle Scholar
  75. White FJ (1990) Electrophysiological basis of the reinforcing effects of cocaine. Behav Pharmacol 1:303–315CrossRefPubMedGoogle Scholar
  76. White FJ, Wang RY (1984) A10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists. Life Sci 34:1161–1170CrossRefPubMedGoogle Scholar
  77. Woolverton WL, Cervo L, Johanson CE (1984) Effects of repeated methamphetamine administration on methamphetamine self-administration in rhesus monkeys. Pharmacol Biochem Behav 21:737–741CrossRefPubMedGoogle Scholar
  78. Yargic I, Ozdemiroglu FA (2011) Pregabalin abuse: a case report/pregabalin kötüye kullanımı: Bir olgu sunumu. Klinik Psikofarmakoloji Bülteni / Bulletin of Clinical Psychopharmacology:64–66Google Scholar
  79. Yokel RA, Wise RA (1978) Amphetamine- type reinforcement by dopaminergic agonists in the rat. Psychopharmacology 58:289–296CrossRefPubMedGoogle Scholar
  80. Zaccara G, Gangemi P, Perucca P, Specchio L (2011) The adverse event profile of pregabalin: a systematic review and meta-analysis of randomized controlled trials. Epilepsia 52:826–836CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Basile Coutens
    • 1
  • Lionel Mouledous
    • 1
  • Manta Stella
    • 1
  • Claire Rampon
    • 1
  • Maryse Lapeyre-Mestre
    • 2
  • Anne Roussin
    • 2
  • Bruno P. Guiard
    • 1
    • 3
    • 4
    Email author
  • Emilie Jouanjus
    • 2
  1. 1.Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI)Université Paul Sabatier Toulouse IIIToulouse, Cedex 09France
  2. 2.Pharmacoepidemiology Research UnitINSERM-Université Toulouse 3, UMR 1027ToulouseFrance
  3. 3.Faculté de PharmacieUniversité Paris Sud, Université Paris-SaclayChatenay-MalabryFrance
  4. 4.CNRS UMR-5169, UPSToulouseFrance

Personalised recommendations