Skip to main content

Advertisement

Log in

Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Pregabalin is a psychoactive drug indicated in the treatment of epilepsy, neuropathic pain, and generalized anxiety disorders. Pregabalin acts on different neurotransmission systems by inactivating the alpha2-delta subunit of voltage-gated calcium channels. In light of this pharmacological property, the hypothesis has been raised that pregabalin may regulate the mesolimbic dopamine pathway and thereby display a potential for misuse or abuse as recently observed in humans. Although some preclinical data support this possibility, the rewarding properties of gabapentinoid are still a matter for debate.

Objective

The aim of this work was to evaluate the rewarding properties of pregabalin and to determine its putative mechanism of action in healthy mice.

Results

Pregabalin alone (60 mg/kg; s.c.) produced a rewarding effect in the conditioned place preference (CPP) test albeit to a lower extent than cocaine (30 mg/kg; s.c.). Interestingly, when assessing locomotor activity in the CPP, the PGB60 group, similarly to the cocaine group, showed an increased locomotor activity. In vivo single unit extracellular recording showed that pregabalin had mixed effects on dopamine (DA) neuronal activity in the ventral tegmental area since it decreased the activity of 50% of neurons and increased 28.5% of them. In contrast, cocaine decreased 75% of VTA DA neuronal activity whereas none of the neurons were activated. Intracerebal microdialysis was then conducted in awake freely mice to determine to what extent such electrophysiological parameters influence the extracellular DA concentrations ([DA]ext) in the nucleus accumbens. Although pregabalin failed to modify this parameter, cocaine produced a robust increase (800%) in [DA]ext.

Conclusions

Collectively, these electrophysiological and neurochemical experiments suggest that the rewarding properties of pregabalin result from a different mode of action than that observed with cocaine. Further experiments are warranted to determine whether such undesirable effects can be potentiated under pathological conditions such as neuropathic pain, mood disorders, or addiction and to identify the key neurotransmitter system involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adell A, Artigas F (2004) The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 28:415–431

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Dopamine autoreceptors - pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedeberg's Arch Pharmacol 297:1–7

    Article  CAS  Google Scholar 

  • Andrews N, Loomis S, Blake R, Ferrigan L, Singh L, McKnight AT (2001) Effect of gabapentin-like compounds on development and maintenance of morphine-induced conditioned place preference. Psychopharmacology 157:381–387

    Article  CAS  PubMed  Google Scholar 

  • Asaoka Y, Kato T, Ide S, Amano T, Minami M (2018) Pregabalin induces conditioned place preference in the rat during the early, but not late, stage of neuropathic pain. Neurosci Lett 668:133–137

    Article  CAS  PubMed  Google Scholar 

  • Ashton H, Young AH (2003) GABA-ergic drugs: exit stage left, enter stage right. J Psychopharmacol 17:174–178

    Article  CAS  PubMed  Google Scholar 

  • Asomaning K, Abramsky S, Liu Q, Zhou X, Sobel RE, Watt S (2016) Pregabalin prescriptions in the United Kingdom: a drug utilisation study of the health improvement network (THIN) primary care database. Int J Clin Pract 70:380–388

    Article  CAS  PubMed  Google Scholar 

  • Balster RL, Bigelow GE (2003) Guidelines and methodological reviews concerning drug abuse liability assessment. Drug Alcohol Depend 70:S13–S40

    Article  PubMed  Google Scholar 

  • Barik J, Parnaudeau S, Saint Amaux AL, Guiard BP, Golib Dzib JF, Bocquet O, Bailly A, Benecke A, Tronche F (2010) Glucocorticoid receptors in dopaminoreceptive neurons, key for cocaine, are dispensable for molecular and behavioral morphine responses. Biol Psychiatry 68:231–239

    Article  CAS  PubMed  Google Scholar 

  • Ben-Menachem E (2004) Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 45(Suppl 6):13–18

    Article  CAS  PubMed  Google Scholar 

  • Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: an ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80

    Article  CAS  PubMed  Google Scholar 

  • Bonnet U, Scherbaum N (2017) How addictive are gabapentin and pregabalin? A systematic review. Eur Neuropsychopharmacol 27:1185–1215

    Article  CAS  PubMed  Google Scholar 

  • Bossard JB, Ponte C, Dupouy J, Lapeyre-Mestre M, Jouanjus E (2016) Disproportionality analysis for the assessment of abuse and dependence potential of pregabalin in the French pharmacovigilance database. Clin Drug Investig 36:735–742

    Article  CAS  PubMed  Google Scholar 

  • Bradberry CW, Roth RH (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci Lett 103:97–102

    Article  CAS  PubMed  Google Scholar 

  • Bura SA, Cabanero D, Maldonado R (2018) Operant self-administration of pregabalin in a mouse model of neuropathic pain. Eur J Pain 22:763–773

    Article  CAS  PubMed  Google Scholar 

  • Campbell JO, Wood RD, Spear LP (2000) Cocaine and morphine-induced place conditioning in adolescent and adult rats. Physiol Behav 68:487–493

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology 122:194–197

    Article  CAS  PubMed  Google Scholar 

  • Childs E, de Wit H (2009) Amphetamine-induced place preference in humans. Biol Psychiatry 65:900–904

    Article  CAS  PubMed  Google Scholar 

  • Daneshdoust D, Khalili-Fomeshi M, Ghasemi-Kasman M, Ghorbanian D, Hashemian M, Gholami M, Moghadamnia A, Shojaei A (2017) Pregabalin enhances myelin repair and attenuate glial activation in lysolecithin-induced demyelination model of rat optic chiasm. Neuroscience 344:148–156

    Article  CAS  PubMed  Google Scholar 

  • de Guglielmo G, Cippitelli A, Somaini L, Gerra G, Li H, Stopponi S, Ubaldi M, Kallupi M, Ciccocioppo R (2013) Pregabalin reduces cocaine self-administration and relapse to cocaine seeking in the rat. Addict Biol 18:644–653

    Article  CAS  PubMed  Google Scholar 

  • Di Ciano P, Coury A, Depoortere RY, Egilmez Y, Lane JD, Emmett-Oglesby MW, Lepiane FG, Phillips AG, Blaha CD (1995) Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 6:311–322

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61

    Article  PubMed  Google Scholar 

  • Di Matteo V, Di Mascio M, Di Giovanni G, Esposito E (2000) Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin 2C receptors. Psychopharmacology 150:45–51

    Article  PubMed  Google Scholar 

  • Dolphin AC (2013) The alpha2delta subunits of voltage-gated calcium channels. Biochim Biophys Acta 1828:1541–1549

    Article  CAS  PubMed  Google Scholar 

  • Driot D, Chicoulaa B, Jouanjus E, Dupouy J, Oustric S, Lapeyre-Mestre M (2016a) Pregabalin use disorder and secondary nicotine dependence in a woman with no substance abuse history. Therapie 71:575–578

    Article  PubMed  Google Scholar 

  • Driot D, Jouanjus E, Oustric S, Dupouy J, Lapeyre-Mestre M (2016b) Pattern of gabapentin and pregabalin use and misuse: results of a population-based cohort study. Br J Clin Pharmacol (manuscript ID: MP-00410-18.R2)

  • Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    Article  CAS  PubMed  Google Scholar 

  • Esposito E (2006) Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr Drug Targets 7:177–185

    Article  CAS  PubMed  Google Scholar 

  • Evoy KE, Morrison MD, Saklad SR (2017) Abuse and misuse of pregabalin and gabapentin. Drugs 77:403–426

    Article  CAS  PubMed  Google Scholar 

  • Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipetto FA, Zipp CP, Coren JS (2010) Potential for pregabalin abuse or diversion after past drug-seeking behavior. J Am Osteopath Assoc 110:605–607

    PubMed  Google Scholar 

  • Gahr M, Freudenmann RW, Hiemke C, Kolle MA, Schonfeldt-Lecuona C (2013) Pregabalin abuse and dependence in Germany: results from a database query. Eur J Clin Pharmacol 69:1335–1342

    Article  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--1. Identification and characterization. Neuroscience 10:301–315

    Article  CAS  PubMed  Google Scholar 

  • Grenhoff J, North RA, Johnson SW (1995) Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. Eur J Neurosci 7:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Grosshans M, Lemenager T, Vollmert C, Kaemmerer N, Schreiner R, Mutschler J, Wagner X, Kiefer F, Hermann D (2013) Pregabalin abuse among opiate addicted patients. Eur J Clin Pharmacol 69:2021–2025

    Article  CAS  PubMed  Google Scholar 

  • Guiard BP, Chenu F, El Mansari M, Blier P (2011) Characterization of the electrophysiological properties of triple reuptake inhibitors on monoaminergic neurons. Int J Neuropsychopharmacol 14:211–223

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen M, Vuori E, Kalso E, Gergov M, Ojanpera I (2014) Profiles of pregabalin and gabapentin abuse by postmortem toxicology. Forensic Sci Int 241:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hasanein P, Shakeri S (2014) Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats. Eur J Pharmacol 742:113–117

    Article  CAS  PubMed  Google Scholar 

  • Haukka J, Kriikku P, Mariottini C, Partonen T, Ojanpera I (2018) Non-medical use of psychoactive prescription drugs is associated with fatal poisoning. Addiction 113:464–472

    Article  PubMed  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Dewey WL, Kelly E, Henderson G (2018) Oxycodone-induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. Br J Pharmacol 175:2492–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotsenpiller G, Wolf ME (2002) Conditioned locomotion is not correlated with behavioral sensitization to cocaine: an intra-laboratory multi-sample analysis. Neuropsychopharmacology 27:924–929

    Article  CAS  PubMed  Google Scholar 

  • Hubner CB, Moreton JE (1991) Effects of selective D1 and D2 dopamine antagonists on cocaine self-administration in the rat. Psychopharmacology 105:151–156

    Article  CAS  PubMed  Google Scholar 

  • Kagan L (2014) Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins. Drug Metab Dispos 42:1890–1905

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Aizenstein ML (1991) Amphetamine, cocaine, and fencamfamine - relationship between locomotor and stereotypy response profiles and caudate and accumbens-dopamine dynamics. J Neurosci 11:2703–2712

    Article  CAS  PubMed  Google Scholar 

  • Larson EB, Wissman AM, Loriaux AL, Kourrich S, Self DW (2015) Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci 35:3537–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Launiainen T, Broms U, Keskitalo-Vuokko K, Pitkaniemi J, Pelander A, Kaprio J, Ojanpera I (2011) Nicotine, alcohol, and drug findings in young adults in a population-based postmortem database. Nicotine Tob Res 13:763–771

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F, Cui M, Hoffman D, Donevan S (2011) Pregabalin is a potent and selective ligand for alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J Pharmacol 667:80–90

    Article  CAS  PubMed  Google Scholar 

  • Marie N, Noble F (2012) Drug dependence: progress in neurobiology and perspectives in therapeutics. Presse Med 41:1259–1270

    Article  PubMed  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloëz-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Fabre P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT (2014) Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82:1346–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaizola I, Ellger T, Young P, Bosebeck F, Evers S, Kellinghaus C (2006) Pregabalin-associated acute psychosis and epileptiform EEG-changes. Seizure 15:208–210

    Article  PubMed  Google Scholar 

  • Oosterhof CA, El Mansari M, Blier P (2014) Acute effects of brexpiprazole on serotonin, dopamine, and norepinephrine systems: an in vivo electrophysiologic characterization. J Pharmacol Exp Ther 351:585–595

    Article  CAS  PubMed  Google Scholar 

  • Papazisis G, Garyfallos G, Sardeli C, Kouvelas D (2013) Pregabalin abuse after past substance-seeking behavior. Int J Clin Pharmacol Ther 51:441–442

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330

    Article  CAS  PubMed  Google Scholar 

  • Pettit HO, Justice JB Jr (1991) Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539:94–102

    Article  CAS  PubMed  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    Article  CAS  PubMed  Google Scholar 

  • Richardson NR, Piercey MF, Svensson K, Collins RJ, Myers JE, Roberts DC (1993) Antagonism of cocaine self-administration by the preferential dopamine autoreceptor antagonist, (+)-AJ 76. Brain Res 619:15–21

    Article  CAS  PubMed  Google Scholar 

  • Roberts DC, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904

    Article  CAS  PubMed  Google Scholar 

  • Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    Article  CAS  PubMed  Google Scholar 

  • Rutten K, De Vry J, Robens A, Tzschentke TM, van der Kam EL (2011) Dissociation of rewarding, anti-aversive and anti-nociceptive effects of different classes of anti-nociceptives in the rat. Eur J Pain 15:299–305

    Article  CAS  PubMed  Google Scholar 

  • Schifano F, D'Offizi S, Piccione M, Corazza O, Deluca P, Davey Z, Di Melchiorre G, Di Furia L, Farre M, Flesland L, Mannonen M, Majava A, Pagani S, Peltoniemi T, Siemann H, Skutle A, Torrens M, Pezzolesi C, van der Kreeft P, Scherbaum N (2011) Is there a recreational misuse potential for pregabalin? Analysis of anecdotal online reports in comparison with related gabapentin and clonazepam data. Psychother Psychosom 80:118–122

    Article  PubMed  Google Scholar 

  • Schjerning O, Pottegard A, Damkier P, Rosenzweig M, Nielsen J (2016) Use of pregabalin - a nationwide pharmacoepidemiological drug utilization study with focus on abuse potential. Pharmacopsychiatry 49:155–161

    Article  CAS  PubMed  Google Scholar 

  • Schwan S, Sundstrom A, Stjernberg E, Hallberg E, Hallberg P (2010) A signal for an abuse liability for pregabalin--results from the Swedish spontaneous adverse drug reaction reporting system. Eur J Clin Pharmacol 66:947–953

    Article  PubMed  Google Scholar 

  • Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW (1998) The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol 9:195–206

    CAS  PubMed  Google Scholar 

  • Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003–8015

    Article  CAS  PubMed  Google Scholar 

  • Stopponi S, Somaini L, Cippitelli A, de Guglielmo G, Kallupi M, Cannella N, Gerra G, Massi M, Ciccocioppo R (2012) Pregabalin reduces alcohol drinking and relapse to alcohol seeking in the rat. Psychopharmacology 220:87–96

    Article  CAS  PubMed  Google Scholar 

  • Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150

    Article  CAS  PubMed  Google Scholar 

  • Taylor AMW, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, Xue L, Olmstead MC, De Koninck Y, Evans CJ, Cahill CM (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35(22):8442–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada H, Harada N, Nishiyama S, Ohba H, Kakiuchi T (2000) Dose-response and duration effects of acute administrations of cocaine and GBR12909 on dopamine synthesis and transporter in the conscious monkey brain: PET studies combined with microdialysis. Brain Res 860:141–148

    Article  CAS  PubMed  Google Scholar 

  • Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7:21–26

    Article  CAS  PubMed  Google Scholar 

  • Vashchinkina E, Piippo O, Vekovischeva O, Krupitsky E, Ilyuk R, Neznanov N, Kazankov K, Zaplatkin I, Korpi ER (2018) Addiction-related interactions of pregabalin with morphine in mice and humans: reinforcing and inhibiting effects. Addict Biol 23:945–958

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725

    Article  CAS  PubMed  Google Scholar 

  • White FJ (1990) Electrophysiological basis of the reinforcing effects of cocaine. Behav Pharmacol 1:303–315

    Article  PubMed  Google Scholar 

  • White FJ, Wang RY (1984) A10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists. Life Sci 34:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Woolverton WL, Cervo L, Johanson CE (1984) Effects of repeated methamphetamine administration on methamphetamine self-administration in rhesus monkeys. Pharmacol Biochem Behav 21:737–741

    Article  CAS  PubMed  Google Scholar 

  • Yargic I, Ozdemiroglu FA (2011) Pregabalin abuse: a case report/pregabalin kötüye kullanımı: Bir olgu sunumu. Klinik Psikofarmakoloji Bülteni / Bulletin of Clinical Psychopharmacology:64–66

  • Yokel RA, Wise RA (1978) Amphetamine- type reinforcement by dopaminergic agonists in the rat. Psychopharmacology 58:289–296

    Article  CAS  PubMed  Google Scholar 

  • Zaccara G, Gangemi P, Perucca P, Specchio L (2011) The adverse event profile of pregabalin: a systematic review and meta-analysis of randomized controlled trials. Epilepsia 52:826–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge “the Mouse Behavioural Phenotyping Core” (Center of Integrative Biology, Toulouse, France) for its expertise and assistance in setting up behavioral apparatus and procedures.

Funding

This independent study did not receive resources from pharmaceutical companies and was funded by the academic collaborating laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno P. Guiard.

Ethics declarations

All experiments were carried out in accordance with the European guidelines for the care of laboratory animals (European Communities Council Directive 86/609/ECC) and approved by the local Ethics Committee and the French Ministry of Education and Research (APAFIS#6659-2016090512114815 v3).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bruno P. Guiard and Emilie Jouanjus co-directed this study.

Electronic Supplementary Material

Supplemental Figure 1

Individual distribution of the percentage of time spent in the drug-paired compartment before (D0) and after (D5) conditioning in response to cocaine (30 mg/kg, s.c.) (A) or pregabalin (PGB 60 mg/kg, s.c.). (PNG 577 kb)

High resolution image (TIFF 3072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutens, B., Mouledous, L., Stella, M. et al. Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse. Psychopharmacology 236, 2069–2082 (2019). https://doi.org/10.1007/s00213-019-05198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05198-z

Keywords

Navigation