Skip to main content
Log in

Cannabinoid-induced lower lip retraction in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lower lip retraction (LLR) in rats has been described as a distinctive effect of 5-HT1A agonists. In the course of evaluating behavioral effects of cannabinoid agonists in rats, LLR effects were evident following injection of several cannabinoid agonists.

Objectives

To pharmacologically characterize cannabinoid-induced LLR in rats.

Methods

Lower lip retraction was scored using a 3-point scale for up to 6 h after injection of the cannabinoid agonists Δ9-tetrahydrocannabinol (Δ9-THC, 1–10 mg/kg), AM7499 (0.01–1.0 mg/kg), or AM2389 (0.003–0.1 mg/kg), or, for comparison, the 5-HT1A agonist 8-OH-DPAT (0.01–0.3 mg/kg). Next, antagonist effects of rimonabant (1–10 mg/kg) and WAY100635 (0.3 mg/kg) on LLR produced by cannabinoid or 5-HT1A agonists were evaluated. Lastly, effects of 8-OH-DPAT were determined following pretreatment with AM2389 (0.003–0.01 mg/kg) or Δ9-THC (1 mg/kg).

Results

All three cannabinoid agonists produced LLR. Effects of AM2389 were attenuated by both rimonabant and WAY100635 whereas effects of 8-OH-DPAT were antagonized by WAY 100635 but not by rimonabant. Pretreatment with 1 mg/kg Δ9-THC or 0.01 mg/kg AM2389 shifted the 8-OH-DPAT dose-effect function for LLR to the left and isobolographic analysis of the data indicates CB1 and 5-HT1A interactions can be supraadditive.

Conclusions

Cannabinoid agonists produce LLR in rats, an effect heretofore ascribed only to activity at 5-HT1A receptors, via CB1 receptor-mediated actions. Co-administration of a cannabinoid agonist and the 5-HT1A agonist 8-OH-DPAT results in a synergistic effect on LLR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad Y, Laurent E, Maillet P, Talab A, Teste JF, Dokhan R, Tran G, Ollivier R (1997) New benzocycloalkylpiperazines, potent and selective 5-HT1A receptor ligands. J Med Chem 40:952–960

    Article  PubMed  Google Scholar 

  • Assié MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2010) F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol 13:1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G (2010) Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 35:2083–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen HH, Jenck F, Broekkamp CL (1989) Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

    Article  CAS  PubMed  Google Scholar 

  • Carhart-Harris RL, Nutt DJ (2017) Serotonin and brain function: a tale of two receptors. J Psychopharmacol 31:1091–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA (1999) Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 38:533–541

    Article  CAS  PubMed  Google Scholar 

  • Chopda GR, Vemuri K, Sharma R, Thakur GA, Makriyannis A, Paronis CA (2013) Diuretic effects of cannabinoid agonists in mice. Eur J Pharmacol 721:64–69

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di MV (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett 483:52–56

    Article  PubMed  Google Scholar 

  • Egashira N, Matsuda T, Koushi E, Mishima K, Iwasaki K, Shoyama Y, Fujiwara M (2006) Involvement of 5-hydroxytryptamine1A receptors in Delta9-tetrahydrocannabinol-induced catalepsy-like immobilization in mice. Eur J Pharmacol 550:117–122

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Matsuda T, Koushi E, Higashihara F, Mishima K, Chidori S, Hasebe N, Iwasaki K, Nishimura R, Oishi R, Fujiwara M (2008) Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system. Eur J Pharmacol 589:117–121

    Article  CAS  PubMed  Google Scholar 

  • Elmore JS, Baumann MH (2018) Repeated exposure to the “Spice” cannabinoid JWH-018 induces tolerance and enhances responsiveness to 5-HT1A receptor stimulation in male rats. Front Psychiatry 9:55. https://doi.org/10.3389/fpsyt.2018.00055

    Article  PubMed  PubMed Central  Google Scholar 

  • Haj-Dahmane S, Shen RY (2011) Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 61:414–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häring M, Marsicano G, Lutz B, Monory K (2007) Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience 146:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Häring M, Enk V, Aparisi Rey A, Loch S, Ruiz de Azua I, Weber T, Bartsch D, Monory K, Lutz B (2015) Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability. Front Behav Neurosci 9:235. https://doi.org/10.3389/fnbeh.2015.00235 eCollection 02015

    Article  PubMed  PubMed Central  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    Article  CAS  PubMed  Google Scholar 

  • Hill MN, Sun JC, Tse MTL, Gorzalka BB (2006) Altered responsiveness of serotinin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 9:277–286

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    Article  CAS  PubMed  Google Scholar 

  • Jastrzebska-Wiesek M, Partyka A, Rychtyk J, Sniecikowska J, Kolaczkowski M, Wesolowska A, Varney MA, Newman-Tancredi A (2018) Activity of serotonin 5-HT1A receptor biased agonists in rat: anxiolytic and antidepressant-like properties. ACS Chem Neurosci 9:1040–1050. https://doi.org/10.1021/acschemneuro.7b00443

  • Jones CA, Johnston LC, Jackson MJ, Smith LA, van Scharrenburg G, Rose S, Jenner PG, McCreary AC (2010) An in vivo pharmacological evaluation of pardoprunox (SLV308) - a novel combined dopamine D2/D3 receptor partial agonist and 5-HT1A receptor agonist with efficacy in experimental models of Parkinsons's disease. Eur Neuropsychopharmacol 20:582–593

    Article  CAS  PubMed  Google Scholar 

  • Kimmel HL, Tallarida RJ, Holtzman SG (1997) Synergism between buprenorphine and cocaine on the rotational behavior of the nigrally-lesioned rat. Psychopharmacology 133:372–377

    Article  CAS  PubMed  Google Scholar 

  • Kleven M, Ybema C, Carilla E, Hamon M, Koek W (1995) Modification of behavioral effects of 8-hydroxy-2-(di-n-propylamino) tetralin following chronic ethanol consumption in the rat: evidence for the involvement of 5-HT1A receptors in ethanol dependence. Eur J Pharmacol 281:219–228

    Article  CAS  PubMed  Google Scholar 

  • Koek W, Patoiseau J-F, Assie MB, Cosi C, Kleven M, Dupont-Passelaigue E, Carilla-Durand E, Palmier C, Valentin J-P, John G, Pauwels PJ, Tarayre JP, Colpaert FC (1998) F 11440, a potent, selective, high efficacy 5-HT1A receptor agonist with marked anxiolytic and antidepressant potential. J Pharm Exp Ther 287:266–283

    CAS  Google Scholar 

  • Koek W, Assié MB, Zernig G, France CP (2000) In vivo estimates of efficacy at 5-HT 1A receptors: effects of EEDQ on the ability of agonists to produce lower-lip retraction in rats. Psychopharmacology 149:377–387

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Nikas SP, Sharma R, Jiang S, Paronis CA, Leonard MZ, Zhang B, Honrao C, Mallipeddi S, Raghav JG, Benchama O, Järbe TU, Bergman J, Makriyannis A (2016) Novel C-ring-hydroxy-substituted controlled deactivation cannabinergic analogues. J Med Chem 59:6903–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-X, Rice KC, France CP (2007) Behavioral effects of dipropyltryptamine in rats: evidence for 5HT1A and 5-HT2A agonist activity. Behav Pharmacol 18:283–288

    Article  CAS  PubMed  Google Scholar 

  • Marco EM, Perez-Alverez L, Borcel E, Rubio M, Guaza C, Ambrosio E, File SE, Viveros MP (2004) Involvement of 5-HT1A receptors in behavioural effects of the cannabinoid receptor agonist CP 55,940 in male rats. Behav Pharmacol 15:21–27

    Article  CAS  PubMed  Google Scholar 

  • Mato S, Aso E, Castro E, Martin M, Valverde O, Maldonado R, Pazos A (2007) CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J Neurochem 103:2111–2120

    Article  CAS  PubMed  Google Scholar 

  • McMahon LR (2016) Enhanced discriminative stimulus effects of Δ9-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug Alcohol Depend 165:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minervini V, Dahal S, France CP (2017) Behavioral characterization of κ opioid receptor agonist spiradoline and cannabinoid receptor agonist CP55940 mixtures in rats. J Pharm Exp Ther 360:280–287

    Article  CAS  Google Scholar 

  • Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiedeberg's Arch Pharmacol 361:19–24

    Article  CAS  Google Scholar 

  • Nikas SP, Alapafuja SO, Papanastasiou I, Paronis CA, Shukla VG, Papahatjis DP, Bowman AL, Halikhedkar A, Han X, Makriyannis A (2010) Novel 1′,1′-chain substituted Hexahydrocannabinols: 9β-Hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol (AM2389) a highly potent cannabinoid receptor 1 (CB1) agonist. J Med Chem 53:6996–7010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakes MD, Law WJ, Clark T, Bamber BA, Komuniecki R (2017) Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors. J Neurosci 37:2859–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paronis CA, Thakur GA, Bajaj S, Nikas SP, Vemuri VK, Makriyannis A, Bergman J (2013) Diuretic effects of cannabinoids. J Pharm Exp Ther 344:8–14

    Article  CAS  Google Scholar 

  • Rawls SM, Cowan A, Tallarida RJ, Geller EB, Adler MW (2002) N-methyl-D-aspartate antagonists and WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one], a cannabinoid agonist, interact to produce synergistic hypothermia. J Pharmacol Exp Ther 303:395–402

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Héaulme M, Alonso R, Shire D, Congy C, Soubrié P, Brelière JC, Le Fur G (1995) Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci 56:1941–1947

    Article  CAS  PubMed  Google Scholar 

  • Solinas M, Tanda G, Wertheim C, Goldberg SR (2010) Dopaminergic augmentation of delta-9-tetrahyrdocannabinol (THC) discrimination: possible involvement of D2-induced formation of anadamide. Psychopharmacology 209:191–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanowicz J, Slowinski T, Wrobel MZ, Herold F, Gomolka AE, Wesolowska A, Jastrzebska-Wiesek M, Partyka A, Andres-Mach M, Czuczwar SJ, Luszczki JJ, Zagaja M, Siwek A, Nowak G, Zolnierek M, Baczek T, Ulenberg S, Belka M, Turlo J (2016) Synthesis and biological investigation of new equatorial (beta) stereoisomers of 3-aminotropane arylamides with atypical antipsychotic profile. Bioorg Med Chem 24:3994–4007

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Alexander SPH, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPARα; a novel neuroprotective mechanism. Br J Pharmacol 152:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tallarida RJ (2012) Revisiting the isobole and related quantitative methods for assessing drug synergism. J Pharmacol Exp Ther 342:2–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallarida RJ (2016) Drug combinations: tests and analysis with isoboles. Curr Protoc Pharmacol 72:9.19.1–9.19.19

    Article  Google Scholar 

  • Townsend D, Thayer SA, Brown DR (2002) Cannabinoids throw up a conundrum. Br J Pharmacol 137:575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SJ, Lefever TW, Jackson C, Tallarida RJ, Walker EA (2008) Effects of a cannabinoid1 receptor antagonist and serotonin2C receptor agonist alone and in combination on motivation for palatable food: a dose-ratio analysis study in mice. J Pharm Exp Ther 325:567–576

    Article  CAS  Google Scholar 

  • Wiley JL, Lefever TW, Cortes RA, Marusich JA (2014) Cross-substitution of Δ9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats. Pharmacol Biochem Behav 124:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zavitsanou K, Wang H, Dalton VS, Nguyen V (2010) Cannabinoid administration increases 5HT1A receptor binding and mRNA expression in the hippocampus of adult but not adolescent rats. Neuroscience 169:315–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Roger Spealman, Jack Bergman, Brian Kangas, and Fernando de Moura for comments on a previous version of the manuscript.

Funding

This work was supported by the National Institutes of Health [Grants DA023142, DA043700].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Paronis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Portions of this work were presented previously in: Chopda G, Anderson J, Nikas SP, Makriyannis A, Paronis CA. Cannabinoid CB1 and serotonin 5-HT1A agonists mediate lower lip retraction by independent mechanisms, at the 2012 FASEB meeting in San Diego, California; FASEB J (2012) 26:661.8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopda, G.R., Nikas, S.P., Sharma, R. et al. Cannabinoid-induced lower lip retraction in rats. Psychopharmacology 236, 1199–1206 (2019). https://doi.org/10.1007/s00213-018-5125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5125-z

Keywords

Navigation