Skip to main content
Log in

Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study.

Methods

We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal.

Results and conclusions

Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230–239

    Article  CAS  Google Scholar 

  • Babiloni F, Mattia D, Babiloni C, Astolfi L, Salinari S, Basilisco A, Rossini PM, Marciani MG, Cincotti F (2004) Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn Reson Imaging 22:1471–1476

    Article  Google Scholar 

  • Baenninger A, Palzes VA, Roach BJ, Mathalon DH, Ford JM, Koenig T (2017) Abnormal coupling between default mode network and delta and beta band brain electric activity in psychotic patients. Brain Connect 7:34–44

    Article  Google Scholar 

  • Balsters JH, O'Connell RG, Martin MP, Galli A, Cassidy SM, Kilcullen SM, Delmonte S, Brennan S, Meaney JF, Fagan AJ, Bokde ALW, Upton N, Lai R, Laruelle M, Lawlor B, Robertson IH (2011) Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers. PLoS One 6:e24126

    Article  CAS  Google Scholar 

  • Beaver JD, Long CJ, Cole DM, Durcan MJ, Bannon LC, Mishra RG, Matthews PM (2011) The effects of nicotine replacement on cognitive brain activity during smoking withdrawal studied with simultaneous fMRI/EEG. Neuropsychopharmacology 36:1792–1800

    Article  CAS  Google Scholar 

  • Berchou R, Chayasirisobhon S, Green V, Mason K (1986) The pharmacodynamic properties of lorazepam and methylphenidate drugs on event-related potentials and power spectral analysis in normal subjects. Clin EEG (electroencephalography) 17:176–180

    CAS  Google Scholar 

  • Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL (1997) A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58

    Article  CAS  Google Scholar 

  • Blain-Moraes S, Lee U, Ku S, Noh G, Mashour GA (2014) Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Front Syst Neurosci 8:114

    Article  Google Scholar 

  • Borsook D, Becerra L, Fava M (2013) Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry 3:e282

    Article  CAS  Google Scholar 

  • Bridwell DA, Wu L, Eichele T, Calhoun VD (2013) The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. NeuroImage 69:101–111

    Article  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  Google Scholar 

  • Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG–fMRI in humans: protocol considerations and data quality. NeuroImage 63:301–309

    Article  CAS  Google Scholar 

  • Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR (2017) The role of fMRI in drug development. Drug Discov Today 23:333–348

    Article  Google Scholar 

  • Clements JA, Nimmo WS (1981) Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 53:27–30

    Article  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333

    CAS  PubMed  Google Scholar 

  • Cutler NR, Sramek JJ, Murphy MF, Riordan H, Bieck P, Carta A (2010) The Impending Crisis in CNS Drug Development. Critical Pathways to Success in CNS Drug Development. Wiley-Blackwell, Hoboken, pp 1–13

  • de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Knott V (2016) Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front Pharmacol 7:348

    PubMed  PubMed Central  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359–1367

    Article  Google Scholar 

  • Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65:154–164

    Article  Google Scholar 

  • Diukova A, Ware J, Smith JE, Evans CJ, Murphy K, Rogers PJ, Wise RG (2012) Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: differential effects of caffeine on cognitive and sensorimotor brain responses. NeuroImage 62:239–249

    Article  CAS  Google Scholar 

  • Eichele T, Moosmann M, Wu L, Gutberlet I, Debener S (2010) Removal of MRI Artifacts from EEG Recordings. In: Ulllsperger M, and Debener S (ed) Simultaneous EEG and fMRI: Recording, Analysis, and Application Oxford, Oxford Scholarship Online. https://doi.org/10.1093/acprof:oso/9780195372731.003.0006

    Chapter  Google Scholar 

  • Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, Weiss E, Rothman DL, Krystal JH (2002) Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59:851–858

    Article  CAS  Google Scholar 

  • Fellner MC, Volberg G, Mullinger KJ, Goldhacker M, Wimber M, Greenlee MW, Hanslmayr S (2016) Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. Neuroimage 133:354–366

    Article  Google Scholar 

  • Fink M (2010) Remembering the lost neuroscience of pharmaco-EEG. Acta Psychiatr Scand 121:161–173

    Article  Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355

    Article  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487–2492

    Article  Google Scholar 

  • Greenblatt DJ, Legangneux E, Harmatz JS, Weinling E, Freeman J, Rice K, Zammit GK (2006) Dynamics and kinetics of a modified-release formulation of zolpidem: comparison with immediate-release standard zolpidem and placebo. J Clin Pharmacol 46:1469–1480

    Article  CAS  Google Scholar 

  • Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847

    Article  Google Scholar 

  • Guo W-b, Liu F, Xue Z-m, Xu X-j, Wu R-r, Ma C-q, Wooderson SC, Tan C-l, Sun X-l, Chen J-D, Liu Z-n, Xiao C-q, Chen H-f, Zhao J-p (2012) Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog Neuro-Psychopharmacol Biol Psychiatry 37:153–160

    Article  Google Scholar 

  • Hoptman MJ, Zuo X-N, Butler PD, Javitt DC, D'Angelo D, Mauro CJ, Milham MP (2010) Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res 117:13–20

    Article  Google Scholar 

  • Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25:978–988

    Article  CAS  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841

    Article  Google Scholar 

  • Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790

    Article  Google Scholar 

  • Kiviniemi VJ, Haanpää H, Kantola J-H, Jauhiainen J, Vainionpää V, Alahuhta S, Tervonen O (2005) Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn Reson Imaging 23:531–537

    Article  CAS  Google Scholar 

  • Klein C, Hänggi J, Luechinger R, Jäncke L (2015) MRI with and without a high-density EEG cap—what makes the difference? NeuroImage 106:189–197

    Article  Google Scholar 

  • Kochs E, Werner C, Hoftman WE, Möllenberg O, Esch JS (1991) Concurrent increases in brain electrical activity and intracranial blood flow velocity during low-dose ketamine anaesthesia. Can J Anaesth 38:826–830

    Article  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  Google Scholar 

  • Kuizenga K, Wierda JMKH, Kalkman CJ (2001) Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 86:354–360

    Article  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) EEG-correlated fMRI of human alpha activity. NeuroImage 19:1463–1476

    Article  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci 100:11053–11058

    Article  CAS  Google Scholar 

  • Liang P, Zhang H, Xu Y, Jia W, Zang Y, Li K (2015) Disruption of cortical integration during midazolam-induced light sedation. Hum Brain Mapp 36:4247–4261

    Article  Google Scholar 

  • Liu Z, de Zwart JA, Yao B, van Gelderen P, Kuo L-W, Duyn JH (2012) Finding thalamic BOLD correlates to posterior alpha EEG. NeuroImage 63:1060–1069

    Article  Google Scholar 

  • Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z, Wang Y, Li J, Hu M, Zhang J, Du H, Zeng L, Liu Z, Wooderson SC, Tan C, Zhao J, Chen H (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406

    Article  Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  CAS  Google Scholar 

  • Mantini D, Perrucci MG, Gratta CD, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci 104:13170–13175

    Article  CAS  Google Scholar 

  • Martino AD, Ghaffari M, Curchack J, Reiss P, Hyde C, Vannucci M, Petkova E, Klein DF, Castellanos FX (2008) Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 64:607–614

    Article  Google Scholar 

  • Mhuircheartaigh RN, Warnaby C, Rogers R, Jbabdi S, Tracey I (2013) Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 5:208ra148

    Article  Google Scholar 

  • Michaloudis D, Kochiadakis G, Georgopoulou G, Fraidakis O, Chlouverakis G, Petrou A, Pollard BJ (1998) The influence of premedication on heart rate variability. Anaesthesia 53:446–453

    Article  CAS  Google Scholar 

  • Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76:691–708

    Article  CAS  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage 20:145–158

    Article  Google Scholar 

  • Moosmann M, Schönfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. NeuroImage 45:1144–1150

    Article  Google Scholar 

  • Musso F, Brinkmeyer J, Ecker D, London MK, Thieme G, Warbrick T, Wittsack H-J, Saleh A, Greb W, de Boer P, Winterer G (2011) Ketamine effects on brain function — simultaneous fMRI/EEG during a visual oddball task. NeuroImage 58:508–525

    Article  CAS  Google Scholar 

  • Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall JE, Singh KD, Saxena N (2015) Evidence that subanaesthetic doses of ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans. J Neurosci 35:11694–11706

    Article  CAS  Google Scholar 

  • Nathan PJ, Phan KL, Harmer CJ, Mehta MA, Bullmore ET (2014) Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery. Curr Opin Pharmacol 14:54–61

    Article  CAS  Google Scholar 

  • Nunez PL, Silberstein RB, Cadusch PJ, Wijesinghe RS, Westdorp AF, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol 90:40–57

    Article  CAS  Google Scholar 

  • Nutt D, Wilson S, Lingford-Hughes A, Myers J, Papadopoulos A, Muthukumaraswamy S (2015) Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers. Neuropharmacology 88:155–163

    Article  CAS  Google Scholar 

  • Oostendorp TF, Oosterom A (1989) Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Trans Biomed Eng 36:382–391

    Article  CAS  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9

    Article  Google Scholar 

  • Platten HP, Schweizer E, Dilger K, Mikus G, Klotz U (1998) Pharmacokinetics and the pharmacodynamic action of midazolam in young and elderly patients undergoing tooth extraction. Clin Pharmacol Ther 63:552–560

    Article  CAS  Google Scholar 

  • Portnova GV, Tetereva A, Balaev V, Atanov M, Skiteva L, Ushakov V, Ivanitsky A, Martynova O (2018) Correlation of BOLD signal with linear and nonlinear patterns of EEG in resting state EEG-informed fMRI. Front Hum Neurosci 11:654

    Article  Google Scholar 

  • Rao J-S, Liu Z, Zhao C, Wei R-H, Zhao W, Tian P-Y, Zhou X, Yang Z-Y, Li X-G (2017) Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 43:144–150

    Article  CAS  Google Scholar 

  • Reinsel RA, Veselis RA, Dnistrian AM, Feshchenko VA, Beattie BJ, Duff MR (2000) Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. Int J Neuropsychopharmacol 3:117–127

    Article  CAS  Google Scholar 

  • Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, Singer W, Wibral M, Uhlhaas PJ (2015) Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical–subcortical networks in humans: evidence from resting-state magnetoencephalography-recordings. Schizophr Bull 41:1105–1114

    Article  Google Scholar 

  • Salvador R, Martínez A, Pomarol-Clotet E, Gomar J, Vila F, Sarró S, Capdevila A, Bullmore E (2008) A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39:279–289

    Article  CAS  Google Scholar 

  • Schartner MM, Carhart-Harris RL, Barrett AB, Seth AK, Muthukumaraswamy SD (2017) Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci Rep 7:46421

    Article  CAS  Google Scholar 

  • Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S (2014) Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol 94:19–24

    Article  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  • Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    Article  Google Scholar 

  • Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, He Y, Yan C-G, Zang Y-F (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031

    Article  CAS  Google Scholar 

  • Sumner RL, McMillan RL, Shaw AD, Singh KD, Sundram F, Muthukumaraswamy SD (2018) Peak visual gamma frequency is modified across the healthy menstrual cycle. Hum Brain Mapp 39:3187–3202

    Article  Google Scholar 

  • Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin Neurophysiol 119:2762–2774

    Article  Google Scholar 

  • Veen BDV, Drongelen WV, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  Google Scholar 

  • Veselis RAMD, Reinsel R, Alagesan RMD, Heino RMD, Bedford RFMD (1991) The EEC as a monitor of midazolam amnesia: changes in power and topography as a function of amnesic state. Anesthesiology 74:866–874

    Article  CAS  Google Scholar 

  • Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC, McEvoy AW, Lemieux L (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. NeuroImage 54:182–190

    Article  Google Scholar 

  • Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. NeuroImage 92:381–397

    Article  Google Scholar 

  • Wong DF, Tauscher J, Gründer G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34:187–203

    Article  CAS  Google Scholar 

  • Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP (2013) Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 80:246–262

    Article  Google Scholar 

  • Zang Y-F, He Y, Zhu C-Z, Cao Q-J, Sui M-Q, Liang M, Tian L-X, Jiang T-Z, Wang Y-F (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development 29:83–91

    Article  Google Scholar 

  • Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141

    Article  Google Scholar 

  • Zuo X-N, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. NeuroImage 49:1432–1445

    Article  Google Scholar 

Download references

Funding

This work was funded by F Hoffman La Roche Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh D Muthukumaraswamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Online Resource 1

The impact of physiological nose on the BOLD signal (DOCX 1.55 mb)

Online Resource 2

Contrasting drug and placebo sessions (DOCX 1.06 mb)

Online Resource 3

EEG/BOLD temporal correlations during placebo (DOCX 27 kb)

Online Resource 4

Drug physiologies (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsyth, A., McMillan, R., Campbell, D. et al. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology 235, 3479–3493 (2018). https://doi.org/10.1007/s00213-018-5064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5064-8

Keywords

Navigation