Skip to main content
Log in

The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Novel synthetic “bath salt” cathinones continue to appear on the street as abused and addictive drugs. The range of subjective experiences produced by different cathinones suggests that some compounds have primarily dopaminergic activity (possible stimulants) while others have primarily serotonergic activity (possible empathogenics). An understanding of the structure activity relationships (SARs) of these compounds will help in assessing the likely behavioral effects of future novel structures, and to define potential therapeutic strategies to reverse any reinforcing effects.

Objectives

A series of methcathinone analogs was systematically studied for their activity at the dopamine and serotonin transporters. Compound structures varied at the aromatic group, either by substituent or by replacement of the phenyl ring with a naphthalene or indole ring.

Methods

A novel, high-yielding synthesis of methcathinone hydrochlorides was developed which avoids isolation of the unstable free bases. Neurotransmitter transporter release activity was determined in rat brain synaptosomes as previously reported. Compounds were also screened for activity at the norepinephrine transporter.

Results

Twenty-eight methcathinone analogs were analyzed and fully characterized in dopamine and serotonin transporter release assays. Compounds substituted at the 2-position (ortho) were primarily dopaminergic. Compounds substituted at the 3-position (meta) were found to be much less dopaminergic, with some substituents favoring serotonergic activity. Compounds substituted at the 4-position (para) were found to be far more serotonergic, as were disubstituted compounds and other large aromatic groups. One exception was the fluoro-substituted analogs which seem to favor the dopamine transporter.

Conclusions

The dopaminergic to serotonergic ratio can be manipulated by choice of substituent and location on the aromatic ring. It is therefore likely possible to tweak the subjective and reinforcing effects of these compounds by adjusting their structure. Certain substituents like a fluoro group tend to favor the dopamine transporter, while others like a trifluoromethyl group favor the serotonin transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Banks ML, Blough BE, Stevens Negus S (2013) Interaction between behavioral and pharmacological treatment strategies to decrease cocaine choice in rhesus monkeys. Neuropsychopharmacology 38:395–404

    Article  CAS  PubMed  Google Scholar 

  • Banks ML, Bauer CT, Blough BE, Rothman RB, Partilla JS, Baumann MH, Negus SS (2014) Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys. Exp Clin Psychopharmacol 22:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Clark RD, Woolverton WL, Wee S, Blough BE, Rothman RB (2011) In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J Pharmacol Exp Ther 337:218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698:1–5

    Article  CAS  PubMed  Google Scholar 

  • Blough B (2008) Dopamine releasing agents. In: Trudell M (ed) Dopamine transporters: chemistry, biology, and pharmacology (a Wiley series in drug discovery and development). Wiley, Hoboken

    Google Scholar 

  • Blough BE, Landavazo A, Partilla JS, Baumann MH, Decker AM, Page KM, Rothman RB (2014a) Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics. ACS Med Chem Lett 5:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB (2014b) Alpha-ethyltryptamines as dual dopamine-serotonin releasers. Bioorg Med Chem Lett 24:4754–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA, Cozzi NV, Partilla JS, Baumann MH, Negus SS (2015) Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172:2433–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botanas CJ, Yoon SS, de la Pena JB, Dela Pena IJ, Kim M, Woo T, Seo JW, Jang CG, Park KT, Lee YH, Lee YS, Kim HJ, Cheong JH (2017) A novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), produced rewarding effects and altered striatal dopamine-related gene expression in mice. Behav Brain Res 317:494–501

    Article  CAS  PubMed  Google Scholar 

  • Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM, Landavazo A, McElroy KT, Navarro HA, Gatch MB, Forster MJ (2009) Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for cocaine addiction. J Med Chem 52:6768–6781

    Article  CAS  PubMed  Google Scholar 

  • Carroll FI, Blough BE, Mascarella SW, Navarro HA, Eaton JB, Lukas RJ, Damaj MI (2010) Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for smoking cessation. J Med Chem 53:2204–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll FI, Blough BE, Mascarella SW, Navarro HA, Lukas RJ, Damaj MI (2014) Bupropion and bupropion analogs as treatments for CNS disorders. Adv Pharmacol 69:177–216

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A, Sitte HH, Baumann MH (2013) Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur J Pharmacol 699:180–187

    Article  CAS  PubMed  Google Scholar 

  • Del Bello F, Sakloth F, Partilla JS, Baumann MH, Glennon RA (2015) Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: interactions with transporters for serotonin, dopamine, and norepinephrine. Bioorg Med Chem 23:5574–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Swanson T, Johnson RA, Janowsky A (2017) Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J Pharmacol Exp Ther 360:33–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol 47:681–698

    Article  CAS  Google Scholar 

  • Foley KF, Cozzi N (2003) Novel aminopropiophenones as potential antidepressants. Drug Dev Res 60:252–260

    Article  CAS  Google Scholar 

  • Gatch MB, Rutledge MA, Forster MJ (2015) Discriminative and locomotor effects of five synthetic cathinones in rats and mice. Psychopharmacology 232:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Dukat M (2017) Structure-activity relationships of synthetic cathinones. Curr Top Behav Neurosci 32:19–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glennon RA, Yousif M, Naiman N, Kalix P (1987) Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 26:547–551

    Article  CAS  PubMed  Google Scholar 

  • Gregg RA, Baumann MH, Partilla JS, Bonano JS, Vouga A, Tallarida CS, Velvadapu V, Smith GR, Peet MM, Reitz AB, Negus SS, Rawls SM (2015) Stereochemistry of mephedrone neuropharmacology: enantiomer-specific behavioural and neurochemical effects in rats. Br J Pharmacol 172:883–894

    Article  CAS  PubMed  Google Scholar 

  • Hutsell BA, Baumann MH, Partilla JS, Banks ML, Vekariya R, Glennon RA, Negus SS (2016) Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. Eur Neuropsychopharmacol 26:288–297

    Article  CAS  PubMed  Google Scholar 

  • Hyde JF, Browning E, Adams R (1928) Synthetic homologs of d,l-ephedrine. J Am Chem Soc 50:2287–2292

    Article  CAS  Google Scholar 

  • Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME (2011) The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther 90:246–255

    Article  CAS  PubMed  Google Scholar 

  • Kaminski BJ, Griffiths RR (1994) Intravenous self-injection of methcathinone in the baboon. Pharmacol Biochem Behav 47:981–983

    Article  CAS  PubMed  Google Scholar 

  • Kohut SJ, Jacobs DS, Rothman RB, Partilla JS, Bergman J, Blough BE (2017) Cocaine-like discriminative stimulus effects of “norepinephrine-preferring” monoamine releasers: time course and interaction studies in rhesus monkeys. Psychopharmacology 234:3455–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Italien YJ, Park H, Rebstock MC (1957) Methylaminopropiophenone compounds and methods for producing the same. In: Office USP (ed) United States Patent Office. Parke, Davis and Company, US, pp 3

  • Li M, Farley RA, Lester HA (2002) Voltage-dependent transient currents of human and rat 5-HT transporters (SERT) are blocked by HEPES and ion channel ligands. FEBS Lett 513:247–252

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134:4–12

    Article  CAS  PubMed  Google Scholar 

  • Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    CAS  PubMed  Google Scholar 

  • Partilla JS, Baumann MH, Decker AM, Blough BE, Rothman RB (2016) Interrogating the activity of ligands at monoamine transporters in rat brain synaptosomes. In: Bönisch S, Sitte HH (eds) Neurotransmitter transporters. Springer, New York, pp 41–52

    Chapter  Google Scholar 

  • Patel NB (2000) Mechanism of action of cathinone: the active ingredient of khat (Catha edulis). East Afr Med J 77:329–332

    CAS  PubMed  Google Scholar 

  • Peyton J, Shulgin AT (1996) Novel N-substituted-2-amino-3′,4′-methylenedioxypropiophenones. In: Organization WIP (ed) PCT. Neurobiological Technologies, Inc., Emeryville

    Google Scholar 

  • Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147C:1–19

    Article  CAS  Google Scholar 

  • Rickli A, Hoener MC, Liechti ME (2015) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25:365–376

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Katsnelson M, Vu N, Partilla JS, Dersch CM, Blough BE, Baumann MH (2002) Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain. Eur J Pharmacol 447:51–57

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Blough BE, Baumann MH (2008) Dopamine/serotonin releasers as medications for stimulant addictions. Prog Brain Res 172:385–406

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Clark J (1993) From synapse to vesicle - the reuptake and storage of biogenic-amine neurotransmitters. Biochim Biophys Acta 1144:249–263

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH (2015) ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD, Baumann MH (2016) Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology 233:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Shalabi AR, Walther D, Baumann MH, Glennon RA (2017) Deconstructed analogues of bupropion reveal structural requirements for transporter inhibition versus substrate-induced neurotransmitter release. ACS Chem Neurosci 8:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Shekar A, Aguilar JI, Galli G, Cozzi NV, Brandt SD, Ruoho AE, Baumann MH, Matthies HJG, Galli A (2017) Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter. J Chem Neuroanat 83-84:69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Woolverton WL (2004) Evaluation of the reinforcing effects of atomoxetine in monkeys: comparison to methylphenidate and desipramine. Drug Alcohol Depend 75:271–276

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313:848–854

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Institute on Drug Abuse project DA12970 (BEB) and the Intramural Research Program, National Institute on Drug Abuse, NIH project DA-00522 (MHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Blough.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

This article belongs to a Special Issue on Bath Salts

Electronic supplementary material

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blough, B.E., Decker, A.M., Landavazo, A. et al. The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes. Psychopharmacology 236, 915–924 (2019). https://doi.org/10.1007/s00213-018-5063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5063-9

Keywords

Navigation