Skip to main content
Log in

Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

(R,S)-ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, exhibits rapid and long-lasting antidepressant effects and anti-suicidal ideation in treatment-resistant patients with depression. However, the precise mechanisms underlying the antidepressant actions of (R,S)-ketamine are unknown. Although the previous report demonstrated the deuterium isotope effects in the antidepressant actions of (R,S)-ketamine, the deuterium isotope effects in the antidepressant actions of (R)-ketamine, which is more potent than (S)-ketamine, are unknown.

Methods

We examined whether deuterium substitution at the C6 position could affect antidepressant effects of (R)-ketamine in a chronic social defeat stress (CSDS) model.

Results

Pharmacokinetic studies showed that levels of (2R,6R)-d1-hydroxynorketamine [(2R,6R)-d1-HNK], a final metabolite of (R)-d2-ketamine, in the plasma and brain after administration of (R)-d2-ketamine (10 mg/kg) were lower than those of (2R,6R)-HNK from (R)-ketamine (10 mg/kg), indicating deuterium isotope effects in the production of (2R,6R)-HNK. In contrast, levels of (R)-ketamine and its metabolite (R)-norketamine in the plasma and brain were the same for both compounds. In a CSDS model, both (R)-ketamine (10 mg/kg) and (R)-d2-ketamine (10 mg/kg) showed rapid and long-lasting (7 days) antidepressant effects, indicating no deuterium isotope effect in the antidepressant effects of (R)-ketamine.

Conclusions

The present study suggests that deuterium substitution of hydrogen at the C6 position slows the metabolism from (R)-ketamine to (2R,6R)-HNK in mice. In contrast, we did not find the deuterium isotope effects in terms of the rapid and long-lasting antidepressant effects of (R)-ketamine in a CSDS model. Therefore, it is unlikely that (2R,6R)-HNK is essential for antidepressant effects of (R)-ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdallah CG (2017) What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise? Biol Psychiatry 81:e61–e63

    Article  PubMed  PubMed Central  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Chaki S (2017) Beyond ketamine: new approaches to the development of safer antidepressants. Curr Neuropharmacol 15:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaki S (2018) Is metabolism of (R)-ketamine essential for the antidepressant effects? Int J Neuropsychopharmacol 21:154–156

    Article  PubMed  Google Scholar 

  • Chang L, Toki H, Qu Y, Fujita Y, Mizuno-Yasuhira A, Yamaguchi JI, Chaki S, Hashimoto K (2018) No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyy053

    Article  PubMed  PubMed Central  Google Scholar 

  • Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, Sanghvi M, Goldberg ME, Torjman MC, Wainer IW (2012) Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica 42:1076–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AB (1984) Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol Sci 5:524–527

    Article  CAS  Google Scholar 

  • Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi JI, Hashimoto K, Chaki S (2017) Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther 361:9–16

    Article  CAS  PubMed  Google Scholar 

  • Garay R, Zarate CA Jr, Cavero I, Kim YK, Charpeaud T, Skolnick P (2018) The development of glutamate-based antidepressants is taking longer than expected. Drug Discov Today. https://doi.org/10.1016/j.drudis.2018.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K (2016a) R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol Med 46:2449–2451

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2016b) Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets 20:1389–1392

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2016c) Detrimental side effects of repeated ketamine infusions in the brain. Am J Psychiatry 173:1044–1045

    Article  PubMed  Google Scholar 

  • Hashimoto K, Shirayama Y (2018) What are the causes for discrepancies of antidepressant actions of (2R,6R)-hydroxynorketamine? Biol Psychiatry 84:e7–e8

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Inoue O, Suzuki K, Yamasaki T, Kojima M (1986) Deuterium isotope effect of [11C]N,N-dimethylphenethylamine-α,α-d2: reduction in metabolic trapping rate in brain. Int J Rad Appl Instrum B 13:79–80

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H (2017) Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci 267:173–176

    Article  PubMed  Google Scholar 

  • Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  CAS  PubMed  Google Scholar 

  • Kavalali ET, Monteggia LM (2015) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35–39

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T, Chawla JM, Hagi K, Zarate CA, Kane JM, Bauer M, Correll CU (2016) Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med 46:1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krystal JH, Sanacora G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteggia LM, Zarate CA Jr (2015) Antidepressant actions of ketamine: from molecular mechanisms to clinical practice. Curr Opin Neurobiol 30:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Newport DJ, Carpenter LL, WM MD, Potash JB, Tohen M, Nemeroff CB, APA Council of Research Task Force on Novel Biomarkers and Treatments (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172:950–966

    Article  PubMed  Google Scholar 

  • Sanacora G, Frye MA, McDonald W, Mathew SJ, Turner MS, Schatzberg AF, Summergrad P, Nemeroff CB, American Psychiatric Association (APA) Council of Research Task Force on Novel Biomarkers and Treatments (2017) A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry 74:399–405

    Article  PubMed  Google Scholar 

  • Shirayama Y, Hashimoto K (2017) Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression. Eur Arch Psychiatry Clin Neurosci 267:177–182

    Article  PubMed  Google Scholar 

  • Shirayama Y, Hashimoto K (2018) Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol 21:84–88

    Article  PubMed  Google Scholar 

  • Short B, Fong J, Galvez V, Shelker W, Loo CK (2018) Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry 5:65–78

    Article  PubMed  Google Scholar 

  • Singh I, Morgan C, Curran V, Nutt D, Schlag A, McShane R (2017) Ketamine treatment for depression: opportunities for clinical innovation and ethical foresight. Lancet Psychiatry 4:419–426

    Article  PubMed  Google Scholar 

  • Tian Z, Dong C, Fujita A, Fujita Y, Hashimoto K (2018) Expression of heat shock protein HSP-70 in the rerosplenial cortex of rat brain after administration of (R,S)-ketamine and (S)-ketamine, but not (R)-ketamine. Pharmacol Biochem Behav 172:17–21

    Article  CAS  PubMed  Google Scholar 

  • Toki H, Ichikawa T, Mizuno-Yasuhara A, Yamaguchi JI (2018) A rapid and sensitive chiral LC-MS/MS method for the determination of ketamine and norketamine in mouse plasma, brain and cerebrospinal fluid applicable to the stereoselective pharmacokinetic study of ketamine. J Pharm Biomed Anal 148:288–297

    Article  CAS  PubMed  Google Scholar 

  • Wiberg KB (1955) The deuterium isotope effect. Chem Rev 55:713–743

    Article  CAS  Google Scholar 

  • Wilkinson ST, Toprak M, Turner MS, Levine SP, Katz RB, Sanacora G (2017) A survey of the clinical, off-label use of ketamine as a treatment for psychiatric disorders. Am J Psychiatry 174:695–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, Sos P, Wang G, Zarate CA Jr, Sanacora G (2018) The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry 175:150–158

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO) Depression (2018) Available at www.who.int/news-room/fact-sheets/detail/depression

  • Xu Y, Hackett M, Carter G, Loo C, Gálvez V, Glozier N, Glue P, Lapidus K, McGirr A, Somogyi AA, Mitchell PB, Rodgers A (2016) Effects of low-dose and very low-dose ketamine among patients with major depression: a systematic review and meta-analysis. Int J Neuropsychopharmacol 19:pyv124

    Article  PubMed  Google Scholar 

  • Yamaguchi J, Toki H, Qu Y, Yang C, Koike H, Hashimoto K, Mizuno-Yasuhira A, Chaki S (2018) (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Neuropsychopharmacology 43:1900–1907

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Han M, Zhang JC, Ren Q, Hashimoto K (2016) Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine. Psychiatry Res 239:281–283

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K (2017a) (R)-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 82:e43–e44

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Qu Y, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K (2017b) Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine sin a social defeat stress model. Transl Psychiatry 7:1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, Hashimoto K (2018) Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry 83:18–28

    Article  CAS  PubMed  Google Scholar 

  • Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA Jr, Gould TD (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70:621–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 72:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JC, Li SX, Hashimoto K (2014) R(-)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Dong C, Fujita Y, Fujita A, Hashimoto K (2018a) 5-Hydroxytryptamine-independent antidepressant actions of (R)-ketamine in a chronic social defeat stress model. Int J Neuropsychopharmacol 21:157–163

    Article  PubMed  Google Scholar 

  • Zhang K, Fujita Y, Hashimoto K (2018b) Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model. Sci Rep 8:4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Ma M, Dong C, Hashimoto K (2018c) Role of inflammatory bone markers in the antidepressant actions of (R)-ketamine in a chronic social defeat stress model. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyy065

Download references

Funding

This study was supported by AMED (to K.H., JP18dm0107119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

Dr. Hashimoto is an inventor on a filed patent application on “The use of (R)-ketamine in the treatment of psychiatric diseases” by Chiba University. Dr. Hashimoto has received research support from Dainippon-Sumitomo, Otsuka, and Taisho. Drs. Toki, Mizuno-Yasuhira, Yamaguchi, and Chaki are employee of Taisho Pharmaceutical Co., Ltd., Japan. Other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Toki, H., Fujita, Y. et al. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Psychopharmacology 235, 3177–3185 (2018). https://doi.org/10.1007/s00213-018-5017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5017-2

Keywords

Navigation