Higher habitual dietary caffeine consumption is related to lower experimental pain sensitivity in a community-based sample

Abstract

Rationale

Caffeine is the most widely consumed psychoactive substance in the world. Caffeine administered acutely in a laboratory environment or as a medication adjuvant has known properties that help alleviate pain. However, much less is known about the potential impact of habitual dietary caffeine consumption on the experience of pain.

Objectives

The primary objective of this observational study was to determine whether caffeine consumed habitually as part of a daily diet was associated with experimental pain sensitivity using noxious stimuli in a non-clinical sample of 62 community-dwelling adults between 19 and 77 years old.

Methods

Study participants monitored their daily dietary caffeine consumption (e.g., coffee, tea, soda, energy drinks, and chocolate) across a period of seven consecutive days using a caffeine consumption diary. On the seventh day of caffeine consumption monitoring, participants presented to the laboratory to complete experimental pain sensitivity testing. Noxious thermal and mechanical stimuli were used to obtain threshold and tolerance for painful heat and pressure, respectively.

Results

Data analysis revealed that greater self-reported daily caffeine consumption was significantly associated with higher heat pain threshold (β = .296, p = .038), higher heat pain tolerance (β = .242, p = .046), and higher pressure pain threshold (β = .277, p = .049) in multiple regression models adjusted for covariates.

Conclusions

Results of this study completed with community-dwelling adults revealed that individuals who habitually consume greater amounts of caffeine as part of their daily diets demonstrate diminished sensitivity to painful stimuli in a laboratory setting.

This is a preview of subscription content, log in to check access.

References

  1. Addicott MA, Yang LL, Peiffer AM, Laurienti PJ (2009) Methodological considerations for the quantification of self-reported caffeine use. Psychopharmacology 203(3):571–578. https://doi.org/10.1007/s00213-008-1403-5

    CAS  Article  PubMed  Google Scholar 

  2. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3):342–392

    Article  Google Scholar 

  3. Baratloo, A., Rouhipour, A., Forouzanfar, M. M., Safari, S., Amiri, M., & Negida, A. (2016). The role of caffeine in pain management: a brief literature review. Anesth Pain Med, 6(3), e33193. doi:https://doi.org/10.5812/aapm.33193

  4. Barone JJ, Roberts HR (1996) Caffeine consumption. Food Chem Toxicol 34(1):119–129

    CAS  Article  Google Scholar 

  5. Blackwell T, Redline S, Ancoli-Israel S, Schneider JL, Surovec S, Johnson NL, Study of osteoporotic fractures research, G (2008) Comparison of sleep parameters from actigraphy and polysomnography in older women: the SOF study. Sleep 31(2):283–291

    Article  Google Scholar 

  6. Bulls HW, Freeman EL, Anderson AJ, Robbins MT, Ness TJ, Goodin BR (2015) Sex differences in experimental measures of pain sensitivity and endogenous pain inhibition. J Pain Res 8:311–320. https://doi.org/10.2147/JPR.S84607

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bunker ML, McWilliams M (1979) Caffeine content of common beverages. J Am Diet Assoc 74(1):28–32

    CAS  PubMed  Google Scholar 

  8. Campana, C., Griffin, P. L., & Simon, E. L. (2014). Caffeine overdose resulting in severe rhabdomyolysis and acute renal failure. Am J Emerg Med, 32(1), 111 e113–114. doi:https://doi.org/10.1016/j.ajem.2013.08.042, 111.e4

    Article  Google Scholar 

  9. Cappelletti S, Piacentino D, Sani G, Aromatario M (2015) Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 13(1):71–88. https://doi.org/10.2174/1570159X13666141210215655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Derry CJ, Derry S, Moore RA (2012) Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst Rev 3:CD009281. https://doi.org/10.1002/14651858.CD009281.pub2

    Article  Google Scholar 

  11. Derry CJ, Derry S, Moore RA (2014) Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst Rev 12:CD009281. https://doi.org/10.1002/14651858.CD009281.pub3

    Article  Google Scholar 

  12. Finan PH, Goodin BR, Smith MT (2013) The association of sleep and pain: an update and a path forward. J Pain 14(12):1539–1552. https://doi.org/10.1016/j.jpain.2013.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105(1):110–113. https://doi.org/10.1016/j.jada.2004.10.027

    Article  PubMed  Google Scholar 

  14. Fulgoni VL 3rd, Keast DR, Lieberman HR (2015) Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr 101(5):1081–1087. https://doi.org/10.3945/ajcn.113.080077

    CAS  Article  PubMed  Google Scholar 

  15. Glover TL, Goodin BR, Horgas AL, Kindler LL, King CD, Sibille KT, Fillingim RB (2012) Vitamin D, race, and experimental pain sensitivity in older adults with knee osteoarthritis. Arthritis Rheum 64(12):3926–3935. https://doi.org/10.1002/art.37687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Goodin BR, McGuire L, Allshouse M, Stapleton L, Haythornthwaite JA, Burns N, Edwards RR (2009) Associations between catastrophizing and endogenous pain-inhibitory processes: sex differences. J Pain 10(2):180–190. https://doi.org/10.1016/j.jpain.2008.08.012

    Article  PubMed  Google Scholar 

  17. Goodin BR, Smith MT, Quinn NB, King CD, McGuire L (2012) Poor sleep quality and exaggerated salivary cortisol reactivity to the cold pressor task predict greater acute pain severity in a non-clinical sample. Biol Psychol 91(1):36–41. https://doi.org/10.1016/j.biopsycho.2012.02.020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goodin BR, Owens MA, Yessick LR, Rainey RL, Okunbor JI, White DM, Merlin JS (2017) Detectable viral load may be associated with increased pain sensitivity in persons living with HIV: preliminary findings. Pain Med 18(12):2289–2295. https://doi.org/10.1093/pm/pnx057

    Article  PubMed  Google Scholar 

  19. Grosso G, Godos J, Galvano F, Giovannucci EL (2017) Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr 37:131–156. https://doi.org/10.1146/annurev-nutr-071816-064941

    CAS  Article  PubMed  Google Scholar 

  20. Heckman MA, Weil J, Gonzalez de Mejia E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–R87. https://doi.org/10.1111/j.1750-3841.2010.01561.x

    CAS  Article  PubMed  Google Scholar 

  21. Heinz AJ, de Wit H, Lilje TC, Kassel JD (2013) The combined effects of alcohol, caffeine, and expectancies on subjective experience, impulsivity, and risk-taking. Exp Clin Psychopharmacol 21(3):222–234. https://doi.org/10.1037/a0032337

    Article  PubMed  PubMed Central  Google Scholar 

  22. Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46(2):101–123. https://doi.org/10.1080/10408390500400009

    CAS  Article  PubMed  Google Scholar 

  23. Karunathilake NP, Frye RF, Stavropoulos MF, Herman MA, Hastie BA (2012) A preliminary study on the effects of self-reported dietary caffeine on pain experience and postoperative analgesia. J Caffeine Res 2(4):159–166. https://doi.org/10.1089/jcr.2012.0016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Keogh E, Witt G (2001) Hypoalgesic effect of caffeine in normotensive men and women. Psychophysiology 38(6):886–895

    CAS  Article  Google Scholar 

  25. Kim, H. J., Yang, G. S., Greenspan, J. D., Downton, K. D., Griffith, K. A., Renn, C. L., . . . Dorsey, S. G. (2017). Racial and ethnic differences in experimental pain sensitivity: systematic review and meta-analysis. Pain, 158(2), 194–211. doi:https://doi.org/10.1097/j.pain.0000000000000731

    Article  PubMed  Google Scholar 

  26. Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC (2001) Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med 2(5):389–396

    CAS  Article  Google Scholar 

  27. Larroque B, Kaminski M, Lelong N, Subtil D, Dehaene P (1993) Effects of birth weight of alcohol and caffeine consumption during pregnancy. Am J Epidemiol 137(9):941–950

    CAS  Article  Google Scholar 

  28. Leathwood PD, Pollet P (1982) Diet-induced mood changes in normal populations. J Psychiatr Res 17(2):147–154

    Article  Google Scholar 

  29. Mackus M, van de Loo A, Benson S, Scholey A, Verster JC (2016) Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students. Appetite 103:353–357. https://doi.org/10.1016/j.appet.2016.04.038

    Article  PubMed  Google Scholar 

  30. Malinauskas BM, Aeby VG, Overton RF, Carpenter-Aeby T, Barber-Heidal K (2007) A survey of energy drink consumption patterns among college students. Nutr J 6:35. https://doi.org/10.1186/1475-2891-6-35

    Article  PubMed  PubMed Central  Google Scholar 

  31. McCusker, R. R., Goldberger, B. A., & Cone, E. J. (2003). Caffeine content of specialty coffees. J Anal Toxicol, 27(7), 520–522. doi:NO_DOI

  32. McLellan TM, Caldwell JA, Lieberman HR (2016) A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev 71:294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001

    CAS  Article  PubMed  Google Scholar 

  33. Meredith SE, Juliano LM, Hughes JR, Griffiths RR (2013) Caffeine use disorder: a comprehensive review and research agenda. J Caffeine Res 3(3):114–130. https://doi.org/10.1089/jcr.2013.0016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ (2014) Beverage caffeine intakes in the U.S. Food Chem Toxicol 63:136–142. https://doi.org/10.1016/j.fct.2013.10.042

    CAS  Article  PubMed  Google Scholar 

  35. Morelli M, Simola N (2011) Methylxanthines and drug dependence: a focus on interactions with substances of abuse. Handb Exp Pharmacol 200:483–507. https://doi.org/10.1007/978-3-642-13443-2_20

    CAS  Article  Google Scholar 

  36. Nastase A, Ioan S, Braga RI, Zagrean L, Moldovan M (2007) Coffee drinking enhances the analgesic effect of cigarette smoking. Neuroreport 18(9):921–924. https://doi.org/10.1097/WNR.0b013e32811d6d0d

    CAS  Article  PubMed  Google Scholar 

  37. Nehlig A (2016) Effects of coffee/caffeine on brain health and disease: what should I tell my patients? Pract Neurol 16(2):89–95. https://doi.org/10.1136/practneurol-2015-001162

    Article  PubMed  Google Scholar 

  38. O’Donoghue GM, Fox N, Heneghan C, Hurley DA (2009) Objective and subjective assessment of sleep in chronic low back pain patients compared with healthy age and gender matched controls: a pilot study. BMC Musculoskelet Disord 10:122. https://doi.org/10.1186/1471-2474-10-122

    Article  PubMed  PubMed Central  Google Scholar 

  39. Quartana PJ, Campbell CM, Edwards RR (2009) Pain catastrophizing: a critical review. Expert Rev Neurother 9(5):745–758. https://doi.org/10.1586/ern.09.34

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ribeiro JA, Sebastiao AM (2010) Caffeine and adenosine. J Alzheimers Dis 20(Suppl 1):S3–S15. https://doi.org/10.3233/JAD-2010-1379

    CAS  Article  Google Scholar 

  41. Rivera-Oliver M, Diaz-Rios M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101(1–2):1–9. https://doi.org/10.1016/j.lfs.2014.01.083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Sadeh A (2011) The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15(4):259–267. https://doi.org/10.1016/j.smrv.2010.10.001

    Article  Google Scholar 

  43. Sawynok J (2011a) Caffeine and pain. Pain 152(4):726–729. https://doi.org/10.1016/j.pain.2010.10.011

    Article  PubMed  Google Scholar 

  44. Sawynok J (2011b) Methylxanthines and pain. Handb Exp Pharmacol 200:311–329. https://doi.org/10.1007/978-3-642-13443-2_11

    CAS  Article  Google Scholar 

  45. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

    CAS  Article  PubMed  Google Scholar 

  46. Scott W, Wideman TH, Sullivan MJ (2014) Clinically meaningful scores on pain catastrophizing before and after multidisciplinary rehabilitation: a prospective study of individuals with subacute pain after whiplash injury. Clin J Pain 30(3):183–190. https://doi.org/10.1097/AJP.0b013e31828eee6c

    Article  PubMed  Google Scholar 

  47. Shohet KL, Landrum RE (2001) Caffeine consumption questionnaire: a standardized measure for caffeine consumption in undergraduate students. Psychol Rep 89(3):521–526. https://doi.org/10.2466/pr0.2001.89.3.521

    CAS  Article  PubMed  Google Scholar 

  48. Sullivan MJ, Bishop SR, Pivik J (1995) The pain catastrophizing scale: development and validation. Psychol Assess 7(4):524–532

    Article  Google Scholar 

  49. Temple JL, Bernard C, Lipshultz SE, Czachor JD, Westphal JA, Mestre MA (2017) The safety of ingested caffeine: a comprehensive review. Front Psychiatry 8:80. https://doi.org/10.3389/fpsyt.2017.00080

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, Doepker C (2017) Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol 109(Pt 1):585–648. https://doi.org/10.1016/j.fct.2017.04.002

    CAS  Article  PubMed  Google Scholar 

  51. Zale EL, Maisto SA, Ditre JW (2015) Interrelations between pain and alcohol: an integrative review. Clin Psychol Rev 37:57–71. https://doi.org/10.1016/j.cpr.2015.02.005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Financial support for this research was provided by the University of Alabama at Birmingham Health Services Research Training Program, T32HS013852 (D.S.O.), NIH/NIA Health Disparities Research Pilot Award through the Deep South Resource Center for Minority Aging Research (RCMAR), P30AG031054, and NIH/NIMHD Grant R01MD010441 (B.R.G.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Burel R. Goodin.

Ethics declarations

This study was approved by the local Institutional Review Board and carried out in accordance with guidelines for the ethical conduct of research.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Overstreet, D.S., Penn, T.M., Cable, S.T. et al. Higher habitual dietary caffeine consumption is related to lower experimental pain sensitivity in a community-based sample. Psychopharmacology 235, 3167–3176 (2018). https://doi.org/10.1007/s00213-018-5016-3

Download citation

Keywords

  • Caffeine
  • Dietary consumption
  • Pain sensitivity
  • Threshold
  • Tolerance