Skip to main content

A translational perspective on histone acetylation modulators in psychiatric disorders

Abstract

A large volume of research now provides evidence correlating aberrant histone deacetylase (HDAC) activities and hypoacetylation of histones to disruptions in synaptic plasticity, neuronal survival/regeneration, memory formation and consolidation. Hence, maintaining the acetyl-histone homeostasis as a component of neuronal mechanisms by targeting HDACs has emerged as an exciting intervention strategy for several neuropsychiatric disorders. Though extensive preclinical animal studies have elevated the translational potential of HDAC inhibitors (HDACis) in psychiatric disorders, so far, the translational gain remains low. This is perhaps attributed to the anticipated specificity issues and off-target effects which might negate the risk-reward advantage over the approved antipsychotics in use. So, to harness the therapeutic potential of HDACis in psychiatric disorders, a combination therapeutic strategy involving co-administration of an approved HDAC inhibitor (HDACi) along with a marketed antipsychotic drug has emerged in parallel. This takes advantage of the ability of HDACi, like SAHA, to reverse the potentially detrimental hypoacetylated state of chromatin and facilitate to augment the efficacy of atypical antipsychotics like clozapine. Apart from these efforts, as an alternative therapeutic strategy, highly tolerable oral metabolic acetate supplements with an ability to reverse the hypoacetylation states of histone were initiated in animal models. Exogenous acetate carrier enriches the cellular acetyl-CoA pool restoring acetyl-histone homeostasis, reminiscent of HDACi effect, without the associated toxicity. Though the path towards therapeutic intervention in psychiatric disorders using histone acetylation modulators is riddled with challenges, the growing number of tool compounds along with innovative research strategies, however, bodes well for the future.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM (2010a) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27:293–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AMA (2010b) Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 33:195–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    Article  PubMed  CAS  Google Scholar 

  • Bahari-Javan S, Varbanov H, Benito E, Kaurani L, Burkhardt S et al (2017) HDAC1 links early life stress to schizophrenia-like phenotypes. Proc Natl Acad Sci U S A 114:E4686–E4694. https://doi.org/10.1073/pnas.1613842114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A (2015) HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 125:3572–3584

    Article  PubMed  PubMed Central  Google Scholar 

  • Casey DE, Daniel DG, Wassef AA, Tracy KA, Wozniak P, Sommerville KW (2003) Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacology 28:182–192

    Article  PubMed  CAS  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813–829. https://doi.org/10.1016/j.neuron.2011.05.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiume MZ, Cosmetic Ingredients Review Expert Panel (2003) Final report on the safety assessment of triacetin. Int J Toxicol 22(Suppl 2):1–10

    PubMed  Google Scholar 

  • Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S (2016) The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 64:320–324. https://doi.org/10.1016/j.pnpbp.2015.03.010

    Article  CAS  Google Scholar 

  • Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  PubMed  CAS  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60. https://doi.org/10.1038/nature07925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30:55–60

    Article  PubMed  CAS  Google Scholar 

  • Hasan A, Mitchell A, Schneider A, Halene T, Akbarian S (2013) Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur Arch Psychiatry Clin Neurosci 263:273–284

    Article  PubMed  Google Scholar 

  • Hegarty SV, O’Leary E, Solger F, Stanicka J, Sullivan AM, O’Keeffe GW (2016) A small molecule activator of p300/CBP histone acetyltransferase promotes survival and neurite growth in a cellular model of Parkinson’s disease. Neurotox Res 30:510–520. https://doi.org/10.1007/s12640-016-9636-2

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis C (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentary. Neurochem Int 37(2–3):103–110

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Long PM, Tighe SW, Driscoll HE, Moffett JR, Namboodiri AM, Viapiano MS, Lawler SE, Jaworski DM, Fillmore H (2013) Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumorinitiating cells. PLoS One 8(11):e80714. https://doi.org/10.1371/journal.pone.0080714

  • Mahgoub M, Monteggia LM (2013) Epigenetics and psychiatry. Neurotherapeutics 10(4):734–741.

  • Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T et al (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    Article  PubMed  Google Scholar 

  • Marcus EA, Emptage NJ, Marois R, Carew TJ (1994) A comparison of the mechanistic relationships between development and learning in aplysia. Prog Brain Res 100:179–188

    Article  PubMed  CAS  Google Scholar 

  • Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MA (2005) Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther 315:297–303

    Article  PubMed  CAS  Google Scholar 

  • McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31:764–774. https://doi.org/10.1523/JNEUROSCI.5052-10.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McQuown SC, Wood MA (2011) HDAC3 and the molecular brake pad hypothesis. Neurobiol Learn Mem 96:27–34. https://doi.org/10.1016/j.nlm.2011.04.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montalvo-Ortiz JL, Fisher DW, Rodríguez G, Fang D, Csernansky JG, Dong H (2017) Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice. Psychopharmacology 234:2385–2398. https://doi.org/10.1007/s00213-017-4629-2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Montalvo-Ortiz JL, Keegan J, Gallardo C, Gerst N, Tetsuka K, Tucker C, Matsumoto M, Fang D, Csernansky JG, Dong H (2014) HDAC inhibitors restore the capacity of aged mice to respond to haloperidol through modulation of histone acetylation. Neuropsychopharmacology 39:1469–1478. https://doi.org/10.1038/npp.2013.346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106:7876–7881

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM (2013) Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 33:6401–6411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller N, Weidinger E, Leitner B, Schwarz MJ (2015) The role of inflammation in schizophrenia. Front Neurosci 9:372. https://doi.org/10.3389/fnins.2015.00372.eCollection2015.

  • Peleg S, Feller C, Ladurner AG, Imhof A (2016) The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem Sci 41:700–711. https://doi.org/10.1016/j.tibs.2016.05.008

    Article  PubMed  CAS  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  PubMed  CAS  Google Scholar 

  • Peña CJ, Bagot RC, Labonté B, Nestler EJ (2014) Epigenetic signaling in psychiatric disorders. J Mol Biol 426(20):3389–3412

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, Watt JA, Rosenberger TA (2011) Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem 117:264–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RP, Grayson DR, Gavin DP (2008) Histone Deactylase 1 expression is increased in the prefrontal cortex of Schizophrenia subjects; analysis of the National Brain Databank microarray collection. Schizophr Res 98(1–3):111–117

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Choudhury A, Gusain P, Parvez S, Palit G, Shukla S, Ganguly S (2016) Oral acetate supplementation attenuates N-methyl D-aspartate receptor hypofunction-induced behavioral phenotypes accompanied by restoration of acetyl-histone homeostasis. Psychopharmacology 233:1257–1268. https://doi.org/10.1007/s00213-016-4213-1

    Article  PubMed  CAS  Google Scholar 

  • Soliman ML, Rosenberger TA (2011) Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 352:173–180

    Article  PubMed  CAS  Google Scholar 

  • Soliman ML, Smith MD, Houdek HM, Rosenberger TA (2012) Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflammation 9:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salloum IM, Cornelius JR, Daley DC, Kirisci L, Himmelhoch JM, Thase ME (2005) Efficacy of valproate maintenance in patients with bipolar disorder and alcoholism: a double-blind placebo-controlled study. Arch Gen Psychiatry 62:37–45

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF (2016) The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int 99:110–132. https://doi.org/10.1016/j.neuint.2016.06.011

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Volmar CH, Wahlestedt C (2015) Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1:20–27

    Article  Google Scholar 

  • Wagner FF, Zhang YL, Fass DM, Joseph N, Gale JP, Weïwer M, McCarren P, Fisher SL, Kaya T, Zhao WN, Reis SA, Hennig KM, Thomas M, Lemercier BC, Lewis MC, Guan JS, Moyer MP, Scolnick E, Haggarty SJ, Tsai LH, Holson EB (2015) Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem Sci 6:804–815

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xia J, Helfer B, Li C, Leucht S (2016) Valproate for schizophrenia. Cochrane Database Syst Rev 11:CD004028. https://doi.org/10.1002/14651858.CD004028.pub4

    PubMed  Article  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 97:7202–7207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Melas PA, Wegener G, Mathé AA, Lavebratt C (2014) Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int J Neuropsychopharmacol 18(2):pyu032. https://doi.org/10.1093/ijnp/pyu032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The support from DHR is gratefully acknowledged.

Funding

The discussed study in the author’s laboratory is currently supported by funding from the Department of Health Research (DHR), Government of India, (Grant number DHR/HRD/SUG-15/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Ganguly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S., Seth, S. A translational perspective on histone acetylation modulators in psychiatric disorders. Psychopharmacology 235, 1867–1873 (2018). https://doi.org/10.1007/s00213-018-4947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4947-z

Keywords

  • Psychiatry
  • Histone
  • Acetylation
  • Epigenetics
  • Clinical trials
  • Deacetylase
  • Glycerol triacetate
  • HDAC inhibitor
  • Acetyltransferase
  • Acetate supplementation