, Volume 235, Issue 8, pp 2459–2469 | Cite as

Contrast sensitivity and motion discrimination in cannabis users

  • Elena Mikulskaya
  • Frances Heritage MartinEmail author
Original Investigation



Cannabis use impairs visual attention; however, it is unclear whether cannabis use also impairs low level visual processing or whether low level visual deficits can be related to lower dopaminergic functioning found in cannabis users.


To investigate whether spatiotemporal contrast sensitivity and motion discrimination under normal and low luminance conditions differ in cannabis users and non-users.


Control (n = 20) and cannabis (n = 21) participants completed a visual acuity test, a saliva test and self-report measures. Spatial and temporal contrast thresholds, motion coherence thresholds for translational and radial motion and the spontaneous eye blink rate were then collected.


Cannabis users showed decreased spatial contrast sensitivity under low luminance conditions and increased motion coherence thresholds under all luminance levels tested compared to non-users. No differences in temporal contrast sensitivity were found between the groups. Frequency of cannabis use correlated significantly and negatively with contrast sensitivity, both spatial and temporal, in the cannabis group and higher motion coherence thresholds for radial motion were also associated with more frequent cannabis use in this group. The eye blink rate was significantly lower in cannabis users compared to non-users.


The present study shows that cannabis use is associated with deficits in low level visual processing. Such deficits are suggested to relate to lower dopamine, in a similar manner as in clinical populations. The implications for driving safety under reduced visibility (e.g. night) in abstaining cannabis users are discussed.


Cannabis use Contrast sensitivity Radial motion Translational motion Low luminance Spontaneous Eye Blink Rate (SEBR) 



This work was supported by a University of Tasmania Grant to the authors.


  1. Adamson SJ, Kay-Lambkin FJ, Baker AL, Lewin TJ, Thornton L, Kelly BJ, Sellman JD (2010) An improved brief measure of cannabis misuse: the Cannabis Use Disorders Identification Test-Revised (CUDIT-R). Drug Alcohol Depend 110(1–2):137–143. CrossRefPubMedGoogle Scholar
  2. AIHW (2011) 2010 National Drug Strategy Household Survey report. Australian Institute of Health and Welfare, Canberra, pp 102–115Google Scholar
  3. Allen HA, Hutchinson CV, Ledgeway T, Gayle P (2010) The role of contrast sensitivity in global motion processing deficits in the elderly. J Vis 10(15):10CrossRefGoogle Scholar
  4. Allsop DJ, Copeland J, Norberg MM, Fu S, Molnar A, Lewis J, Budney AJ (2012) Quantifying the clinical significance of cannabis withdrawal. PLoS One 7(9):e44864. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG, Organization, W. H, Dependence, D. o. M. H. a. S (2001) AUDIT: the Alcohol Use Disorder Identification Test: guidelines for use in primary health care, 2nd edn. Word Health Organization, GenevaGoogle Scholar
  6. Bambico FR, Nguyen NT, Katz N, Gobbi G (2010) Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol Dis 37(3):641–655. CrossRefPubMedGoogle Scholar
  7. Bloomfield MA, Morgan CJ, Egerton A, Kapur S, Curran HV, Howes OD (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75(6):470–478. CrossRefPubMedGoogle Scholar
  8. Blows S, Ivers RQ, Connor J, Ameratunga S, Woodward M, Norton R (2005) Marijuana use and car crash injury. Addiction 100(5):605–611. CrossRefPubMedGoogle Scholar
  9. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson's disease. Loss in spatiotemporal contrast sensitivity. Brain 110(Pt 6):1675–1698CrossRefPubMedGoogle Scholar
  10. Braddick OJ, O'Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30(1):61–72CrossRefPubMedGoogle Scholar
  11. Braddick O, Atkinson J, Wattam-Bell J (2003) Normal and anomalous development of visual motion processing: motion coherence and 'dorsal-stream vulnerability. Neuropsychologia 41(13):1769–1784CrossRefPubMedGoogle Scholar
  12. Brandies R, Yehuda S (2008) The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 32(4):611–656. CrossRefPubMedGoogle Scholar
  13. Budney AJ, Hughes JR, Moore BA, Novy PL (2001) Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch Gen Psychiatry 58(10):917–924. CrossRefPubMedGoogle Scholar
  14. Burton E, Wattam-Bell J, Rubin GS, Atkinson J, Braddick O, Nardini M (2016) Cortical processing of global form, motion and biological motion under low light levels. Vis Res 121:39–49. CrossRefPubMedGoogle Scholar
  15. Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., … Javitt, D. C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry, 62(5), 495–504.
  16. Cerda M, Wall M, Keyes KM, Galea S, Hasin D (2012) Medical marijuana laws in 50 states: investigating the relationship between state legalization of medical marijuana and marijuana use, abuse and dependence. Drug Alcohol Depend 120(1–3):22–27. CrossRefPubMedGoogle Scholar
  17. Dasilva MA, Grieve KL, Cudeiro J, Rivadulla C (2012) Endocannabinoid CB1 receptors modulate visual output from the thalamus. Psychopharmacology 219:835–845. CrossRefPubMedGoogle Scholar
  18. Dawson WW, Jimenez-Antillon CF, Perez JM, Zeskind JA (1977) Marijuana and vision—after ten years' use in Costa Rica. Invest Ophthalmol Vis Sci 16(8):689–699PubMedGoogle Scholar
  19. van de Giessen E, Weinstein JJ, Cassidy CM, Haney M, Dong Z, Ghazzaoui R et al (2017) Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry 22:68–75. CrossRefPubMedGoogle Scholar
  20. van der Pol P, Liebregts N, de Graaf R, Korf DJ, van den Brink W, van Laar M (2013) Reliability and validity of the Severity of Dependence Scale for detecting cannabis dependence in frequent cannabis users. Int J Methods Psychiatr Res 22(2):138–143. CrossRefPubMedGoogle Scholar
  21. Eggan SM, Lewis DA (2007) Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex 17(1):175–191. CrossRefPubMedGoogle Scholar
  22. Ehrenreich, H., Rinn, T., Kunert, H. J., Moeller, M. R., Poser, W., Schilling, L., … Hoehe, M. R. (1999). Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology, 142(3), 295–301Google Scholar
  23. Garcia-Perez MA (2001) Yes-no staircases with fixed step sizes: psychometric properties and optimal setup. Optom Vis Sci 78(1):56–64CrossRefPubMedGoogle Scholar
  24. Grimm W, Rassow B, Wesemann W, Saur K, Hilz R (1994) Correlation of optotypes with the Landolt ring—a fresh look at the comparability of optotypes. Optom Vis Sci 71(1):6–13CrossRefPubMedGoogle Scholar
  25. Herrmann, R., Heflin, S. J., Hammond, T., Lee, B., Wang, J., Gainetdinov, R. R., … Arshavsky, V. Y. (2011). Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron, 72(1), 101–110.
  26. Horswill MS, Plooy AM (2008) Reducing contrast makes speeds in a video-based driving simulator harder to discriminate as well as making them appear slower. Perception 37(8):1269–1275CrossRefPubMedGoogle Scholar
  27. Karson CN (1988) Physiology of normal and abnormal blinking. Adv Neurol 49:25–37PubMedGoogle Scholar
  28. Kiang M, Christensen BK, Streiner DL, Roy C, Patriciu I, Zipursky RB (2013) Association of abnormal semantic processing with delusion-like ideation in frequent cannabis users: an electrophysiological study. Psychopharmacology 225(1):95–104.
  29. Klekamp J, Riedel A, Harper C, Kretschmann HJ (1987) A quantitative study of Australian aboriginal and Caucasian brains. J Anat 150:191–210PubMedPubMedCentralGoogle Scholar
  30. Kowal MA, Colzato LS, Hommel B (2011) Decreased spontaneous eye blink rates in chronic cannabis users: evidence for striatal cannabinoid-dopamine interactions. PLoS One 6(11):e26662. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lalanne L, Ferrand-Devouge E, Kirchherr S, Rauch L, Koning E, Speeg C, Laprevote V, Giersch A (2017) Impaired contrast sensitivity at low spatial frequency in cannabis users with early onset. Eur Neuropsychopharmacol 27(12):1289–1297. CrossRefPubMedGoogle Scholar
  32. Leek MR (2001) Adaptive procedures in psychophysical research. Percept Psychophys 63(8):1279–1292CrossRefPubMedGoogle Scholar
  33. Masland RH (1996) Processing and encoding of visual information in the retina. Curr Opin Neurobiol 6(4):467–474CrossRefPubMedGoogle Scholar
  34. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877–886. CrossRefPubMedGoogle Scholar
  35. Masson G, Mestre D, Blin O (1993) Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol 7(8):449–463CrossRefPubMedGoogle Scholar
  36. McIlroy, T. (2014). ACT government to join national medical cannabis trial. Retrieved from 27 February, 2015
  37. Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R. S., … Moffitt, T. E. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A, 109(40), E2657–E2664.
  38. Nguyen B, Ni R, Plummer J (2015) Predicting steering control performance from coherent motion performance. J Vis 15(12):413. CrossRefGoogle Scholar
  39. Noyes R Jr, Brunk SF, Avery DA, Canter AC (1975) The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther 18(1):84–89CrossRefPubMedGoogle Scholar
  40. Palamar JJ, Ompad DC, Petkova E (2014) Correlates of intentions to use cannabis among US high school seniors in the case of cannabis legalization. Int J Drug Policy 25(3):424–435. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peli E, Arend L, Labianca AT (1996) Contrast perception across changes in luminance and spatial frequency. J Opt Soc Am A Opt Image Sci Vis 13(10):1953–1959CrossRefPubMedGoogle Scholar
  42. Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74(2):129–180CrossRefPubMedGoogle Scholar
  43. Revheim, N., Corcoran, C. M., Dias, E., Hellmann, E., Martinez, A., Butler, P. D., … Javitt, D. C. (2014). Reading deficits in schizophrenia and individuals at high clinical risk: relationship to sensory function, course of illness, and psychosocial outcome. Am J Psychiatry, 171(9), 949–959.
  44. Rizzo M, Lamers CT, Sauer CG, Ramaekers JG, Bechara A, Andersen GJ (2005) Impaired perception of self-motion (heading) in abstinent ecstasy and marijuana users. Psychopharmacology 179(3):559–566. CrossRefPubMedGoogle Scholar
  45. Rodriguez De Fonseca F, Gorriti MA, Bilbao A, Escuredo L, Garcia-Segura LM, Piomelli D, Navarro M (2001) Role of the endogenous cannabinoid system as a modulator of dopamine transmission: implications for Parkinson's disease and schizophrenia. Neurotox Res 3(1):23–35CrossRefPubMedGoogle Scholar
  46. Russo EB, Merzouki A, Mesa JM, Frey KA, Bach PJ (2004) Cannabis improves night vision: a case study of dark adaptometry and scotopic sensitivity in kif smokers of the Rif mountains of northern Morocco. J Ethnopharmacol 93(1):99–104. CrossRefPubMedGoogle Scholar
  47. Schwitzer T, Schwan R, Angioi-Duprez K, Ingster-Moati I, Lalanne L, Giersch A, Laprevote V (2015) The cannabinoid system and visual processing: a review on experimental findings and clinical presumptions. Eur Neuropsychopharmacol 25(1):100–112. CrossRefPubMedGoogle Scholar
  48. Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vis Res 30(1):1–10CrossRefPubMedGoogle Scholar
  49. Sloane ME, Owsley C, Alvarez SL (1988) Aging, senile miosis and spatial contrast sensitivity at low luminance. Vis Res 28(11):1235–1246CrossRefPubMedGoogle Scholar
  50. Snowden RJ, Kavanagh E (2006) Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception 35(1):9–24CrossRefPubMedGoogle Scholar
  51. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M et al (2002) Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA 287(9):1123–1131CrossRefPubMedGoogle Scholar
  52. Straiker AJ, Maguire G, Mackie K, Lindsey J (1999) Localization of cannabinoid CB1 receptors in the human anterior eye and retina. Invest Ophthalmol Vis Sci 40(10):2442–2448PubMedGoogle Scholar
  53. Taylor, J. R., Elsworth, J. D., Lawrence, M. S., Sladek, J. R., Jr., Roth, R. H., & Redmond, D. E., Jr. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp Neurol, 158(1), 214–220.
  54. Uc EY, Rizzo M, Anderson SW, Dastrup E, Sparks JD, Dawson JD (2009) Driving under low-contrast visibility conditions in Parkinson disease. Neurology 73(14):1103–1110. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Urban NB, Slifstein M, Thompson JL, Xu X, Girgis RR, Raheja S et al (2012) Dopamine release in chronic cannabis users: a [11c]raclopride positron emission tomography study. Biol Psychiatry 71(8):677–683. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Volkow ND, Wang GJ, Telang F, Fowler JS, Alexoff D, Logan J, Jayne M, Wong C, Tomasi D (2014) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A 111(30):E3149–E3156. CrossRefPubMedPubMedCentralGoogle Scholar
  57. World Drug Report (2015). Vienna: United Nations Office on Drugs and CrimeGoogle Scholar
  58. Zhao Y, Kerscher N, Eysel U, Funke K (2001) Changes of contrast gain in cat dorsal lateral geniculate nucleus by dopamine receptor agonists. Neuroreport 12(13):2939–2945CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PsychologyUniversity of NewcastleOurimbahAustralia
  2. 2.TIEI, Russian FederationTula UniversityTulaRussia

Personalised recommendations