, Volume 235, Issue 8, pp 2323–2333 | Cite as

Time-shifting effects of methylphenidate on daily rhythms in the diurnal rodent Arvicanthis ansorgei

  • Jorge MendozaEmail author
  • Hester C. van Diepen
  • Rob Rodrigues Pereira
  • Johanna H. Meijer
Original Investigation


People suffering of attention-deficit/hyperactivity disorder (ADHD) and treated with the psychostimulant methylphenidate (MPH) show sleep-wake cycle and daily rhythm alterations despite the beneficial effects of MPH on behavioral symptoms (i.e., hyperactivity, attention). In nocturnal rodents (i.e., mice), chronic exposure to MPH alters the neural activity of the circadian clock in the suprachiasmatic nucleus (SCN), behavioral rhythms, and the sleep-wake cycle. Here, we studied the effects of MPH on daily rhythms of behavior and body temperature of the diurnal rodent Arvicanthis ansorgei. Under a light-dark cycle, chronic exposure to MPH in drinking water delayed the onset of both activity and body temperature rhythms. Interestingly, delays were larger when MPH access was restricted to the first 6 h of the light phase (i.e., activity phase) of the 24-h cycle. Since MPH effects are dependent on animal’s fluid intake, in a last experiment, we controlled the time and dose of MPH delivery in Arvicanthis using an intraperitoneal perfusion method. Similarly to the experiment with MPH in drinking water, Arvicanthis showed a delay in the onset of general activity and body temperature when MPH infusions, but not vehicle, were during the first 6 h of the light phase. This study indicates that MPH alters daily rhythms in a time-dependent manner and proposes the use of a diurnal rodent for the study of the effects of MPH on the circadian clock. Knowing the circadian modulation on the effects of MPH in behavior could give new insights in the treatment of ADHD.


Arvicanthis Diurnal Circadian Suprachiasmatic Methylphenidate ADHD 



This study is supported by the Agence National de la Recherche (ANR-14-CE13-0002-01 ADDiCLOCK JCJC to JM) and the Centre National de la Recherche Scientifique (JM). JHM is supported by TOPGO and Technology Foundation STW, P10-18. We thank Sylviane Gourmelen and Hanan Bouaouda for technical support. Authors declare that they have no conflicts of interest.

Supplementary material

213_2018_4928_MOESM1_ESM.doc (345 kb)
ESM 1 (DOC 345 kb)


  1. Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99(13):9026–9030. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Algahim MF, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N (2009) Prolonged methylphenidate treatment alters the behavioral diurnal activity pattern of adult male Sprague-Dawley rats. Pharmacol Biochem Behav 92(1):93–99. CrossRefPubMedGoogle Scholar
  3. Antle MC, van Diepen HC, Deboer T, Pedram P, Pereira RR, Meijer JH (2012) Methylphenidate modifies the motion of the circadian clock. Neuropsychopharmacology 37(11):2446–2455. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnsten AF (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology 31(11):2376–2383. CrossRefPubMedGoogle Scholar
  5. Baird AL, Coogan AN, Kaufling J, Barrot M, Thome J (2013) Daily methylphenidate and atomoxetine treatment impacts on clock gene protein expression in the mouse brain. Brain Res 1513:61–71. CrossRefPubMedGoogle Scholar
  6. Bobrzynska KJ, Mrosovsky N (1998) Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J Comp Physiol A 182(2):251–258CrossRefPubMedGoogle Scholar
  7. Boonstra AM, Kooij JJ, Oosterlaan J, Sergeant JA, Buitelaar JK, Van Someren EJ (2007) Hyperactive night and day? Actigraphy studies in adult ADHD: a baseline comparison and the effect of methylphenidate. Sleep 30(4):433–442CrossRefPubMedGoogle Scholar
  8. Brase DA, Loh HH (1976) The increase in brain tryptophan caused by amphetamine-like drugs: correlation with an increase in body temperature. Life Sci 18(1):115–121CrossRefPubMedGoogle Scholar
  9. Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35(1):278–300. CrossRefPubMedGoogle Scholar
  10. Contini V, Rovaris DL, Victor MM, Grevet EH, Rohde LA, Bau CH (2013) Pharmacogenetics of response to methylphenidate in adult patients with attention-deficit/hyperactivity disorder (ADHD): a systematic review. Eur Neuropsychopharmacol 23(6):555–560. CrossRefPubMedGoogle Scholar
  11. Corkum P, Panton R, Ironside S, Macpherson M, Williams T (2008) Acute impact of immediate release methylphenidate administered three times a day on sleep in children with attention-deficit/hyperactivity disorder. J Pediatr Psychol 33(4):368–379. CrossRefPubMedGoogle Scholar
  12. Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210(2):501–513. CrossRefPubMedGoogle Scholar
  13. Dafny N, Yang PB (2006) The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects. Brain Res Bull 68(6):393–405. CrossRefPubMedGoogle Scholar
  14. Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69(12):e145–e157. CrossRefPubMedGoogle Scholar
  15. Galland BC, Tripp EG, Taylor BJ (2010) The sleep of children with attention deficit hyperactivity disorder on and off methylphenidate: a matched case-control study. J Sleep Res 19(2):366–373. CrossRefPubMedGoogle Scholar
  16. Gaytan O, al-Rahim S, Swann A, Dafny N (1997a) Sensitization to locomotor effects of methylphenidate in the rat. Life Sci 61(8):PL101–PL107CrossRefPubMedGoogle Scholar
  17. Gaytan O, Ghelani D, Martin S, Swann A, Dafny N (1997b) Methylphenidate: diurnal effects on locomotor and stereotypic behavior in the rat. Brain Res 777(1–2):1–12CrossRefPubMedGoogle Scholar
  18. Gaytan O, Yang P, Swann A, Dafny N (2000) Diurnal differences in sensitization to methylphenidate. Brain Res 864(1):24–39CrossRefPubMedGoogle Scholar
  19. Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther 295(1):51–57PubMedGoogle Scholar
  20. Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Guler AD (2017) Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Curr Biol 27:2465–2475.e3. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Honma S, Honma K (1992) Locomotor rhythms induced by methylphenidate in suprachiasmatic nuclei-lesioned rats. Neurosci Lett 137(1):24–28CrossRefPubMedGoogle Scholar
  22. Hubbard J, Ruppert E, Calvel L, Robin-Choteau L, Gropp CM, Allemann C, Reibel S, Sage-Ciocca D, Bourgin P (2015) Arvicanthis ansorgei, a novel model for the study of sleep and waking in diurnal rodents. Sleep 38(6):979–988. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hut RA, Mrosovsky N, Daan S (1999) Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus). J Biol Rhythm 14(5):409–419. CrossRefGoogle Scholar
  24. Hutchinson AJ, Ma J, Liu J, Hudson RL, Dubocovich ML (2014) Role of MT1 melatonin receptors in methamphetamine-induced locomotor sensitization in C57BL/6 mice. Psychopharmacology 231(1):257–267. CrossRefPubMedGoogle Scholar
  25. Ironside S, Davidson F, Corkum P (2010) Circadian motor activity affected by stimulant medication in children with attention-deficit/hyperactivity disorder. J Sleep Res 19(4):546–551. CrossRefPubMedGoogle Scholar
  26. Kas MJ, Edgar DM (2001) Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in Octodon degus. J Biol Rhythm 16(1):66–75. CrossRefGoogle Scholar
  27. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114(1):259–270. PubMedCrossRefGoogle Scholar
  28. Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22(16):7264–7271CrossRefPubMedGoogle Scholar
  29. Lee MJ, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N (2011) Repetitive methylphenidate administration modulates the diurnal behavioral activity pattern of adult female SD rats. J Neural Transm (Vienna) 118(2):285–298. CrossRefGoogle Scholar
  30. Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythm 18(3):235–249CrossRefGoogle Scholar
  31. Molina-Carballo A, Naranjo-Gomez A, Uberos J, Justicia-Martinez F, Ruiz-Ramos MJ, Cubero-Millan I, Contreras-Chova F, Augustin-Morales MD, Khaldy-Belkadi H, Munoz-Hoyos A (2013) Methylphenidate effects on blood serotonin and melatonin levels may help to synchronise biological rhythms in children with ADHD. J Psychiatr Res 47(3):377–383. CrossRefPubMedGoogle Scholar
  32. Mrosovsky N (1996) Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 71(3):343–372CrossRefPubMedGoogle Scholar
  33. Mrosovsky N, Edelstein K, Hastings MH, Maywood ES (2001) Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythm 16(5):471–478CrossRefGoogle Scholar
  34. Novakova M, Paclt I, Ptacek R, Kuzelova H, Hajek I, Sumova A (2011) Salivary melatonin rhythm as a marker of the circadian system in healthy children and those with attention-deficit/hyperactivity disorder. Chronobiol Int 28(7):630–637. CrossRefPubMedGoogle Scholar
  35. Owens J, Sangal RB, Sutton VK, Bakken R, Allen AJ, Kelsey D (2009) Subjective and objective measures of sleep in children with attention-deficit/hyperactivity disorder. Sleep Med 10(4):446–456. CrossRefPubMedGoogle Scholar
  36. Pitrosky B, Kirsch R, Malan A, Mocaer E, Pevet P (1999) Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am J Phys 277(3 Pt 2):R812–R828Google Scholar
  37. Pliszka SR (2005) The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1385–1390. CrossRefPubMedGoogle Scholar
  38. Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14(8):341–350. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396(2):157–198CrossRefPubMedGoogle Scholar
  40. Sangal RB, Owens J, Allen AJ, Sutton V, Schuh K, Kelsey D (2006) Effects of atomoxetine and methylphenidate on sleep in children with ADHD. Sleep 29(12):1573–1585CrossRefPubMedGoogle Scholar
  41. Scheel-Kruger J, Hasselager E (1974) Studies of various amphetamines, apomorphine and clonidine on body temperature and brain 5-hydroxytryptamine metabolism in rats. Psychopharmacologia 36(3):189–202CrossRefPubMedGoogle Scholar
  42. Schwartz G, Amor LB, Grizenko N, Lageix P, Baron C, Boivin DB, Joober R (2004) Actigraphic monitoring during sleep of children with ADHD on methylphenidate and placebo. J Am Acad Child Adolesc Psychiatry 43(10):1276–1282. CrossRefPubMedGoogle Scholar
  43. Sobanski E, Schredl M, Kettler N, Alm B (2008) Sleep in adults with attention deficit hyperactivity disorder (ADHD) before and during treatment with methylphenidate: a controlled polysomnographic study. Sleep 31(3):375–381CrossRefPubMedPubMedCentralGoogle Scholar
  44. Soto PL, Wilcox KM, Zhou Y, Kumar A, Ator NA, Riddle MA, Wong DF, Weed MR (2012) Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development. Neuropsychopharmacology 37(12):2566–2579. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sripada S, Gaytan O, Al-rahim S, Swann A, Dafny N (1998) Dose-related effects of MK-801 on acute and chronic methylphenidate administration. Brain Res 814(1–2):78–85CrossRefPubMedGoogle Scholar
  46. Strother WN, Norman AB, Lehman MN (1998) D1-dopamine receptor binding and tyrosine hydroxylase-immunoreactivity in the fetal and neonatal hamster suprachiasmatic nucleus. Brain Res Dev Brain Res 106(1–2):137–144CrossRefPubMedGoogle Scholar
  47. Trinh TN, Kohllepel SR, Yang PB, Burau KD, Dafny N (2013) Adult female rats' altered diurnal locomotor activity pattern following chronic methylphenidate treatment. J Neural Transm (Vienna) 120(12):1717–1731. CrossRefGoogle Scholar
  48. Van der Heijden KB, Smits MG, Van Someren EJ, Gunning WB (2005) Idiopathic chronic sleep onset insomnia in attention-deficit/hyperactivity disorder: a circadian rhythm sleep disorder. Chronobiol Int 22(3):559–570. CrossRefPubMedGoogle Scholar
  49. van Oosterhout F, Lucassen EA, Houben T, vanderLeest HT, Antle MC, Meijer JH (2012) Amplitude of the SCN clock enhanced by the behavioral activity rhythm. PLoS One 7(6):e39693. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van Veen MM, Kooij JJ, Boonstra AM, Gordijn MC, Van Someren EJ (2010) Delayed circadian rhythm in adults with attention-deficit/hyperactivity disorder and chronic sleep-onset insomnia. Biol Psychiatry 67(11):1091–1096. CrossRefPubMedGoogle Scholar
  51. Volobouev VT, Ducroz JF, Aniskin VM, Britton-Davidian J, Castiglia R, Dobigny G, Granjon L, Lombard M, Corti M, Sicard B, Capanna E (2002) Chromosomal characterization of Arvicanthis species (Rodentia, Murinae) from western and Central Africa: implications for taxonomy. Cytogenet Genome Res 96(1–4):250–260. CrossRefPubMedGoogle Scholar
  52. Weaver DR, Reppert SM (1995) Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 33(1):136–148CrossRefPubMedGoogle Scholar
  53. Weiss MD, Gadow K, Wasdell MB (2006) Effectiveness outcomes in attention-deficit/hyperactivity disorder. J Clin Psychiatry 67(Suppl 8):38–45PubMedGoogle Scholar
  54. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Mendoza
    • 1
    Email author
  • Hester C. van Diepen
    • 2
  • Rob Rodrigues Pereira
    • 3
  • Johanna H. Meijer
    • 2
  1. 1.Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212University of StrasbourgStrasbourgFrance
  2. 2.Department of Molecular Cell BiologyLeiden University Medical CentreLeidenThe Netherlands
  3. 3.Medical Center KinderpleinRotterdamThe Netherlands

Personalised recommendations