Advertisement

Psychopharmacology

, Volume 235, Issue 7, pp 2151–2165 | Cite as

Risk-seeking for losses is associated with 5-HTTLPR, but not with transient changes in 5-HT levels

  • Philipp T. Neukam
  • Nils B. Kroemer
  • Yacila I. Deza Araujo
  • Lydia Hellrung
  • Shakoor Pooseh
  • Marcella Rietschel
  • Stephanie H. Witt
  • Uwe Schwarzenbolz
  • Thomas Henle
  • Michael N. Smolka
Original Investigation

Abstract

Rationale

Serotonin (5-HT) plays a key role in different aspects of value-based decision-making. A recent framework proposed that tonic 5-HT (together with dopamine, DA) codes future average reward expectations, providing a baseline against which possible choice outcomes are compared to guide decision-making.

Objectives

To test whether high 5-HT levels decrease loss aversion, risk-seeking for gains, and risk-seeking for losses.

Methods

In a first session, 611 participants were genotyped for 5-HTTLPR and performed a mixed gambles (MGA) task and two probability discounting tasks for gains and losses, respectively (PDG/PDL). Afterwards, a subsample of 105 participants (44 with S/S, 6 with S/L, 55 with L/L genotype) completed the pharmacological study using a crossover design with tryptophan depletion (ATD), loading (ATL), and balanced (BAL) conditions. The same decision constructs were assessed.

Results

We found increased risk-seeking for losses in S/S compared to L/L individuals at the first visit (p = 0.002). Neither tryptophan depletion nor loading affected decision-making, nor did we observe an interaction between intervention and 5-HTTLPR genotype.

Conclusion

Our data do not support the idea that transient changes of tonic 5-HT affect value-based decision-making. We provide evidence for an association of 5-HTTLPR with risk-seeking for losses, independent of acute 5-HT levels. This indicates that the association of 5-HTTLPR and risk-seeking for losses is mediated via other mechanisms, possibly by differences in the structural development of neural circuits of the 5-HT system during early life phases.

Keywords

Decision-making Probability discounting Mixed gambles Acute tryptophan intervention 5-HTTLPR 

Notes

Acknowledgments

We like to thank all our student assistants and the medical staff for helping with the recruitment process and data collection throughout the study and the radiographers at the neuroimaging centre. And the last but not least, we like to thank our enduring participants who dedicated their time to this study.

Funding

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) grants SFB 940/1, SFB 940/2, SM80/7-1, and SM80/7-2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2018_4913_MOESM1_ESM.pdf (283 kb)
ESM 1 (PDF 283 kb)

References

  1. Anderson IM, Richell RA, Bradshaw CM (2003) The effect of acute tryptophan depletion on probabilistic choice. J Psychopharmacol 17:3–7CrossRefPubMedGoogle Scholar
  2. Anderson A, Dreber A, Vestman R (2015) Risk taking, behavioral biases and genes: results from 149 active investors. J Behavioral Experimental Finance 6:93–100CrossRefGoogle Scholar
  3. Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA Jr (2015) Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 51:164–188CrossRefPubMedGoogle Scholar
  4. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881CrossRefPubMedGoogle Scholar
  5. Arroll B, Macgillivray S, Ogston S, Reid I, Sullivan F, Williams B, Crombie I (2005) Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med 3:449–456CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernhardt N, Nebe S, Pooseh S, Sebold M, Sommer C, Birkenstock J, Zimmermann US, Heinz A, Smolka MN (2017) Impulsive decision making in young adult social drinkers and detoxified alcohol-dependent patients: a cross-sectional and longitudinal study. Alcoholism: Clinical and Experimental ResearchGoogle Scholar
  7. Biskup CS, Sanchez CL, Arrant A, Van Swearingen AE, Kuhn C, Zepf FD (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS One 7:e35916CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bizot JC, Thiebot MH, Le Bihan C, Soubrie P, Simon P (1988) Effects of imipramine-like drugs and serotonin uptake blockers on delay of reward in rats. Possible implication in the behavioral mechanism of action of antidepressants. J Pharmacol Exp Ther 246:1144–1151PubMedGoogle Scholar
  9. Blair KS, Finger E, Marsh AA, Morton J, Mondillo K, Buzas B, Goldman D, Drevets WC, Blair RJ (2008) The role of 5-HTTLPR in choosing the lesser of two evils, the better of two goods: examining the impact of 5-HTTLPR genotype and tryptophan depletion in object choice. Psychopharmacology 196:29–38CrossRefPubMedGoogle Scholar
  10. Blier P, Serrano A, Scatton B (1990) Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT1 receptor agonists and p-chloroamphetamine. Synapse 5:120–133CrossRefPubMedGoogle Scholar
  11. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436CrossRefPubMedGoogle Scholar
  12. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35CrossRefPubMedGoogle Scholar
  13. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389CrossRefPubMedGoogle Scholar
  14. Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12:31–40CrossRefPubMedGoogle Scholar
  16. Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36:98–113CrossRefPubMedGoogle Scholar
  17. Courtet P, Picot M-C, Bellivier F, Torres S, Jollant F, Michelon C, Castelnau D, Astruc B, Buresi C, Malafosse A (2004) Serotonin transporter gene may be involved in short-term risk of subsequent suicide attempts. Biol Psychiatry 55:46–51CrossRefPubMedGoogle Scholar
  18. Crisan LG, Pana S, Vulturar R, Heilman RM, Szekely R, Druga B, Dragos N, Miu AC (2009) Genetic contributions of the serotonin transporter to social learning of fear and economic decision making. Soc Cogn Affect Neurosci 4:399–408CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crockett MJ, Cools R (2015) Serotonin and aversive processing in affective and social decision-making. Current Opinion Behavioral Sci 5:64–70CrossRefGoogle Scholar
  20. Crockett MJ, Clark L, Roiser JP, Robinson OJ, Cools R, Chase HW, Ouden H, Apergis-Schoute A, Campbell-Meiklejohn D, Seymour B, Sahakian BJ, Rogers RD, Robbins TW (2012) Converging evidence for central 5-HT effects in acute tryptophan depletion. Mol Psychiatry 17:121–123CrossRefPubMedGoogle Scholar
  21. Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616CrossRefPubMedGoogle Scholar
  22. van den Bos R, Homberg J, Gijsbers E, den Heijer E, Cuppen E (2009) The effect of COMT Val158 Met genotype on decision-making and preliminary findings on its interaction with the 5-HTTLPR in healthy females. Neuropharmacology 56:493–498CrossRefPubMedGoogle Scholar
  23. van der Meer D, Hoekstra PJ, Zwiers M, Mennes M, Schweren LJ, Franke B, Heslenfeld DJ, Oosterlaan J, Faraone SV, Buitelaar JK, Hartman CA (2015) Brain correlates of the interaction between 5-HTTLPR and psychosocial stress mediating attention deficit hyperactivity disorder severity. Am J Psychiatry 172:768–775CrossRefPubMedGoogle Scholar
  24. van der Plasse G (2013) Converging evidence for central 5-HT effects in acute tryptophan depletion? Mol Psychiatry 18:271–272CrossRefPubMedGoogle Scholar
  25. Dingerkus VL, Gaber TJ, Helmbold K, Bubenzer S, Eisert A, Sanchez CL, Zepf FD (2012) Acute tryptophan depletion in accordance with body weight: influx of amino acids across the blood-brain barrier. J Neural Transm (Vienna) 119:1037–1045CrossRefGoogle Scholar
  26. van Donkelaar EL, Blokland A, Ferrington L, Kelly PA, Steinbusch HW, Prickaerts J (2011) Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 16:695–713CrossRefPubMedGoogle Scholar
  27. Dukal H, Frank J, Lang M, Treutlein J, Gilles M, Wolf IA, Krumm B, Massart R, Szyf M, Laucht M, Deuschle M, Rietschel M, Witt SH (2015) New-born females show higher stress- and genotype-independent methylation of SLC6A4 than males. Borderline Personal Disord Emot Dysregul 2:8CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ernst M, Plate RC, Carlisi CO, Gorodetsky E, Goldman D, Pine DS (2014) Loss aversion and 5HTT gene variants in adolescent anxiety. Dev Cogn Neurosci 8:77–85CrossRefPubMedGoogle Scholar
  29. Esposito E, Di Matteo V, Di Giovanni G (2008) Serotonin–dopamine interaction: an overview. 172: In: Müller CP, Jacobs BL (eds) Progress in brain research. Elsevier B.V., pp 3-6Google Scholar
  30. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191CrossRefPubMedGoogle Scholar
  31. Faulkner P, Deakin JF (2014) The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 46(Pt 3):365–378CrossRefPubMedGoogle Scholar
  32. Faulkner P, Selvaraj S, Pine A, Howes OD, Roiser JP (2014) The relationship between reward and punishment processing and the 5-HT1A receptor as shown by PET. Psychopharmacology 231:2579–2586CrossRefPubMedPubMedCentralGoogle Scholar
  33. Faulkner P, Mancinelli F, Lockwood PL, Matarin M, Dolan RJ, Wood NW, Dayan P, Roiser JP (2016) Peripheral serotonin 1B receptor transcription predicts the effect of acute tryptophan depletion on risky decision-making. Int J Neuropsychopharmacol 20Google Scholar
  34. Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416CrossRefPubMedGoogle Scholar
  35. Finger EC, Marsh AA, Buzas B, Kamel N, Rhodes R, Vythilingham M, Pine DS, Goldman D, Blair JR (2007) The impact of tryptophan depletion and 5-HTTLPR genotype on passive avoidance and response reversal instrumental learning tasks. Neuropsychopharmacology 32:206–215CrossRefPubMedGoogle Scholar
  36. Fischer AG, Ullsperger M (2017) An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci 11:484CrossRefPubMedPubMedCentralGoogle Scholar
  37. He Q, Xue G, Chen C, Lu Z, Dong Q, Lei X, Ding N, Li J, Li H, Chen C, Li J, Moyzis RK, Bechara A (2010) Serotonin transporter gene-linked polymorphic region (5-HTTLPR) influences decision making under ambiguity and risk in a large Chinese sample. Neuropharmacology 59:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66:2621–2624CrossRefPubMedGoogle Scholar
  39. Heinz A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D, Linnoila M, Weinberger DR (2000) A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47:643–649CrossRefPubMedGoogle Scholar
  40. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D, Klein S, Grusser SM, Flor H, Schumann G, Mann K, Buchel C (2005) Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 8:20–21CrossRefPubMedGoogle Scholar
  41. Heitland I, Oosting RS, Baas JM, Massar SA, Kenemans JL, Bocker KB (2012) Genetic polymorphisms of the dopamine and serotonin systems modulate the neurophysiological response to feedback and risk taking in healthy humans. Cogn Affect Behav Neurosci 12:678–691CrossRefPubMedPubMedCentralGoogle Scholar
  42. Henle T, Walter H, Krause I, Klostermeyer H (1991) Efficient determination of individual Maillard compounds in heat-treated milk products by amino acid analysis. Int Dairy J 1:125–135CrossRefGoogle Scholar
  43. Hoefgen B, Schulze TG, Ohlraun S, von Widdern O, Hofels S, Gross M, Heidmann V, Kovalenko S, Eckermann A, Kolsch H, Metten M, Zobel A, Becker T, Nothen MM, Propping P, Heun R, Maier W, Rietschel M (2005) The power of sample size and homogenous sampling: association between the 5-HTTLPR serotonin transporter polymorphism and major depressive disorder. Biol Psychiatry 57:247–251CrossRefPubMedGoogle Scholar
  44. Holmes A, Lit Q, Murphy DL, Gold E, Crawley JN (2003) Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2:365–380CrossRefPubMedGoogle Scholar
  45. Homberg JR, van den Bos R, den Heijer E, Suer R, Cuppen E (2008) Serotonin transporter dosage modulates long-term decision-making in rat and human. Neuropharmacology 55:80–84CrossRefPubMedGoogle Scholar
  46. Juhasz G, Downey D, Hinvest N, Thomas E, Chase D, Toth ZG, Lloyd-Williams K, Mekli K, Platt H, Payton A, Bagdy G, Elliott R, Deakin JF, Anderson IM (2010) Risk-taking behavior in a gambling task associated with variations in the tryptophan hydroxylase 2 gene: relevance to psychiatric disorders. Neuropsychopharmacology 35:1109–1119CrossRefPubMedGoogle Scholar
  47. Kahnemann D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–292CrossRefGoogle Scholar
  48. Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, Nielsen FA, Hashemi SH, Baare WF, Madsen J, Hasselbalch SG, Kringelbach ML, Mortensen EL, Knudsen GM (2009) The personality trait openness is related to cerebral 5-HTT levels. NeuroImage 45:280–285CrossRefPubMedGoogle Scholar
  49. Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, Wichems C, Holmes A, Lesch KP, Murphy DL (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49:798–810CrossRefPubMedGoogle Scholar
  50. Kobiella A, Reimold M, Ulshofer DE, Ikonomidou VN, Vollmert C, Vollstadt-Klein S, Rietschel M, Reischl G, Heinz A, Smolka MN (2011) How the serotonin transporter 5-HTTLPR polymorphism influences amygdala function: the roles of in vivo serotonin transporter expression and amygdala structure. Transl Psychiatry 1:e37CrossRefPubMedPubMedCentralGoogle Scholar
  51. Koot S, Zoratto F, Cassano T, Colangeli R, Laviola G, van den Bos R, Adriani W (2012) Compromised decision-making and increased gambling proneness following dietary serotonin depletion in rats. Neuropharmacology 62:1640–1650CrossRefPubMedGoogle Scholar
  52. Kuhnen CM, Chiao JY (2009) Genetic determinants of financial risk taking. PLoS One 4:e4362CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kuhnen CM, Samanez-Larkin GR, Knutson B (2013) Serotonergic genotypes, neuroticism, and financial choices. PLoS One 8:e54632CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lage GM, Malloy-Diniz LF, Matos LO, Bastos MA, Abrantes SS, Correa H (2011) Impulsivity and the 5-HTTLPR polymorphism in a non-clinical sample. PLoS One 6:e16927CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lau T, Schloss P (2012) Differential regulation of serotonin transporter cell surface expression. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling 1:259–268Google Scholar
  56. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531CrossRefPubMedPubMedCentralGoogle Scholar
  57. Long AB, Kuhn CM, Platt ML (2009) Serotonin shapes risky decision making in monkeys. Soc Cogn Affect Neurosci 4:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  58. Marsh AA, Finger EC, Buzas B, Soliman N, Richell RA, Vythilingham M, Pine DS, Goldman D, Blair RJ (2006) Impaired recognition of fear facial expressions in 5-HTTLPR S-polymorphism carriers following tryptophan depletion. Psychopharmacology 189:387–394CrossRefPubMedGoogle Scholar
  59. Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181CrossRefPubMedGoogle Scholar
  60. Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33:926–952CrossRefPubMedGoogle Scholar
  61. Miu AC, Crisan LG, Chis A, Ungureanu L, Druga B, Vulturar R (2012) Somatic markers mediate the effect of serotonin transporter gene polymorphisms on Iowa gambling task. Genes Brain Behav 11:398–403CrossRefPubMedGoogle Scholar
  62. Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 152:390–397CrossRefPubMedGoogle Scholar
  63. Moja EA, Stoff DM, Gessa GL, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42:1551–1556CrossRefPubMedGoogle Scholar
  64. Murphy DL, Lerner A, Rudnick G, Lesch KP (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4:109–123CrossRefPubMedGoogle Scholar
  65. Murphy SE, Longhitano C, Ayres RE, Cowen PJ, Harmer CJ, Rogers RD (2009) The role of serotonin in nonnormative risky choice: the effects of tryptophan supplements on the “reflection effect” in healthy adult volunteers. J Cogn Neurosci 21:1709–1719CrossRefPubMedGoogle Scholar
  66. den Ouden HE, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, Franke B, Cools R (2013) Dissociable effects of dopamine and serotonin on reversal learning. Neuron 80:1090–1100CrossRefGoogle Scholar
  67. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, DeMontigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. P Natl Acad Sci USA 94:5308–5313CrossRefGoogle Scholar
  68. Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191:507–520CrossRefPubMedGoogle Scholar
  69. Olivier JD, Jans LA, Korte-Bouws GA, Korte SM, Deen PM, Cools AR, Ellenbroek BA, Blokland A (2008) Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats. Psychopharmacology 200:243–254CrossRefPubMedGoogle Scholar
  70. Pacheco J, Beevers CG, Benavides C, McGeary J, Stice E, Schnyer DM (2009) Frontal-limbic white matter pathway associations with the serotonin transporter gene promoter region (5-HTTLPR) polymorphism. J Neurosci 29:6229–6233CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442CrossRefPubMedGoogle Scholar
  72. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828–834CrossRefPubMedGoogle Scholar
  73. Pooseh S, Bernhardt N, Guevara A, Huys QJM, Smolka MN (2017) Value-based decision-making battery: a Bayesian adaptive approach to assess impulsive and risky behavior. Behav Res MethodsGoogle Scholar
  74. Poulos CX, Parker JL, Le AD (1996) Dexfenfluramine and 8-OH-DPAT modulate impulsivity in a delay-of-reward paradigm: implications for a correspondence with alcohol consumption. Behav Pharmacol 7:395–399CrossRefPubMedGoogle Scholar
  75. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M, Ginovart N, Tharmalingam S, Masellis M, Houle S, Meyer JH (2007) Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry 62:327–331CrossRefPubMedGoogle Scholar
  76. Ramsøy TZ, Skov M (2010) How genes make up your mind: individual biological differences and value-based decisions. J Econ Psychol 31:818–831CrossRefGoogle Scholar
  77. Reimold M, Smolka MN, Schumann G, Zimmer A, Wrase J, Mann K, Hu XZ, Goldman D, Reischl G, Solbach C, Machulla HJ, Bares R, Heinz A (2007) Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype. J Neural Transm (Vienna) 114:635–639CrossRefGoogle Scholar
  78. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339CrossRefPubMedGoogle Scholar
  79. Rogers RD, Tunbridge EM, Bhagwagar Z, Drevets WC, Sahakian BJ, Carter CS (2003) Tryptophan depletion alters the decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology 28:153–162CrossRefPubMedGoogle Scholar
  80. Roiser JP, Blackwell AD, Cools R, Clark L, Rubinsztein DC, Robbins TW, Sahakian BJ (2006) Serotonin transporter polymorphism mediates vulnerability to loss of incentive motivation following acute tryptophan depletion. Neuropsychopharmacology 31:2264–2272CrossRefPubMedPubMedCentralGoogle Scholar
  81. Roiser JP, de Martino B, Tan GC, Kumaran D, Seymour B, Wood NW, Dolan RJ (2009) A genetically mediated bias in decision making driven by failure of amygdala control. J Neurosci 29:5985–5991CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schweighofer N, Bertin M, Shishida K, Okamoto Y, Tanaka SC, Yamawaki S, Doya K (2008) Low-serotonin levels increase delayed reward discounting in humans. J Neurosci 28:4528–4532CrossRefPubMedGoogle Scholar
  83. Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP, McGuire P, Cowen PJ, Howes O (2012) Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 17:1254–1260CrossRefPubMedGoogle Scholar
  84. Tagliamonte A, Tagliamonte P, Perez-Cruet J, Gessa GL (1971) Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis. Nat New Biol 229:125–126CrossRefPubMedGoogle Scholar
  85. Tagliamonte A, Biggio G, Vargiu L, Gessa GL (1973) Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci II 12:277–287CrossRefPubMedGoogle Scholar
  86. Talbot PS, Watson DR, Barrett SL, Cooper SJ (2006) Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology 31:1519–1525CrossRefPubMedGoogle Scholar
  87. Tripp A, Sibille E (2010) SERT models of emotional dysregulation. In: Kalueff AV, LaPorte JL (eds) Experimental models in serotonin transporter research. Cambridge University Press, Cambridge, pp 105–134CrossRefGoogle Scholar
  88. Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1647CrossRefPubMedGoogle Scholar
  89. Wogar MA, Bradshaw CM, Szabadi E (1993) Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology 111:239–243CrossRefPubMedGoogle Scholar
  90. Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87:173–177CrossRefPubMedGoogle Scholar
  91. Zhong S, Israel S, Xue H, Sham PC, Ebstein RP, Chew SH (2009) A neurochemical approach to valuation sensitivity over gains and losses. Proc Biol Sci 276:4181–4188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Philipp T. Neukam
    • 1
  • Nils B. Kroemer
    • 1
    • 2
  • Yacila I. Deza Araujo
    • 1
  • Lydia Hellrung
    • 1
    • 3
  • Shakoor Pooseh
    • 1
  • Marcella Rietschel
    • 4
  • Stephanie H. Witt
    • 4
  • Uwe Schwarzenbolz
    • 5
  • Thomas Henle
    • 5
  • Michael N. Smolka
    • 1
  1. 1.Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
  2. 2.Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
  3. 3.Department of EconomicsUniversity of ZürichZürichSwitzerland
  4. 4.Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  5. 5.Institute of Food ChemistryTechnische Universität DresdenDresdenGermany

Personalised recommendations