Skip to main content

Advertisement

Log in

Cognitive profile of ketamine-dependent patients compared with methamphetamine-dependent patients and healthy controls

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Ketamine has emerged as a major substance of abuse worldwide and has been listed with methamphetamine (METH) as two of the most widely available illicit substances in Taiwan. Only a few studies have examined the long-term consequences of chronic and heavy ketamine abuse. We compared the cognitive function of ketamine-dependent patients with that of METH-dependent patients and healthy controls.

Methods

We recruited 165 participants (58 ketamine-dependent and 49 METH-dependent patients who sought treatment and 58 healthy controls) and evaluated them by using a cognitive test battery, the Brief Assessment of Cognition in Schizophrenia, with scores being estimated in reference to normative data in general population.

Results

The ketamine-dependent patients had significantly poorer performance than did the controls in many cognitive tests, including verbal memory, motor speed, verbal fluency, and attention and processing speed, and the battery as a whole. METH-dependent patients exhibited poorer function in motor speed, verbal fluency, and attention and processing speed. The ketamine group performed poorer than did METH group in the domains of verbal memory, working memory, and attention and processing speed and the composite battery scores. A previous experience of ketamine-induced psychotomimetic symptoms, using higher doses of ketamine, and longer abstinence appeared to be associated with performance in some tests; however, the significance disappeared after multiple comparison correction.

Conclusions

The ketamine-dependent patients had impaired cognitive function, and METH-dependent patients exhibited intermediate performance between ketamine-dependent patients and healthy controls. Given the growing population of ketamine abusers, public education on the cognitive consequences should be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bokor G, Anderson PD (2014) Ketamine: an update on its abuse. J Pharm Pract 27(6):582–586

    Article  PubMed  Google Scholar 

  • Chan KW, Lee TM, Siu AM, Wong DP, Kam CM, Tsang SK, Chan CC (2013) Effects of chronic ketamine use on frontal and medial temporal cognition. Addict Behav 38:2128–2132

    Article  PubMed  Google Scholar 

  • Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, Hwu HG (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatr 155:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Chen WJ, Fu TC, Ting TT, Huang WL, Tang GM, Hsiao CK, Chen CY (2009) Use of ecstasy and other psychoactive substances among school-attending adolescents in Taiwan: national surveys 2004-2006. BMC Public Health 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CK, Lin SK, Chen YC, Huang MC, Chen TT, Ree SC, Wang LJ (2015a) Persistence of psychotic symptoms as an indicator of cognitive impairment in methamphetamine users. Drug Alcohol Depend 148:158–164

    Article  PubMed  Google Scholar 

  • Chen YC, Wang LJ, Lin SK, Chen CK (2015b) Neurocognitive profiles of methamphetamine users: comparison of those with or without concomitant ketamine use. Subst Use Misuse 50:1778–1785

    Article  PubMed  Google Scholar 

  • Chevallier C, Batisse A, Batel P, Benso V, Segouin C, Marillier M, Djezzar S (2015) Ketamine: medical indications, recreational use and abuse liability. Euro Psychiatry 30:478

    Article  Google Scholar 

  • Critchlow DG (2006) A case of ketamine dependence with discontinuation symptoms. Addiction 101:1212–1213

    Article  PubMed  Google Scholar 

  • Cruickshank CC, Dyer KR (2009) A review of the clinical pharmacology of methamphetamine. Addiction 104:1085–1099

    Article  PubMed  Google Scholar 

  • Dean AC, Groman SM, Morales AM, London ED (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 38:259–274

    Article  CAS  Google Scholar 

  • Dillon P, Copeland J, Jansen K (2003) Patterns of use and harms associated with non-medical ketamine use. Drug Alcohol Depend 69:23–28

    Article  PubMed  Google Scholar 

  • Domier CP, Monterosso JR, Brody AL, Simon SL, Mendrek A, Olmstead R, Jarvik ME, Cohen MS, London ED (2007) Effects of cigarette smoking and abstinence on Stroop task performance. Psychopharmacology 195:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domino EF (2010) Taming the ketamine tiger. 1965. Anesthesiology 113:678–684

    PubMed  Google Scholar 

  • Durieux ME (1995) Inhibition by ketamine of muscarinic acetylcholine receptor function. Anesth Analg 81:57–62

    PubMed  CAS  Google Scholar 

  • Feng LY, Yu WJ, Chang WT, Han E, Chung H, Li JH (2016) Comparison of illegal drug use pattern in Taiwan and Korea from 2006 to 2014. Subst Abuse Treat Preven Pol 11:34

    Article  Google Scholar 

  • Glasner-Edwards S, Mooney LJ (2014) Methamphetamine psychosis: epidemiology and management. CNS Drugs 28:1115–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, Antolini M, Martinelli P, Cesari N, Montanari D, Tessari M, Corsi M, Bifone A (2011) Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS One 6:e16406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanna RC, Shalvoy A, Cullum CM, Ivleva EI, Keshavan M, Pearlson G, Hill SK, Sweeney JA, Tamminga CA, Ghose S (2016) Cognitive function in individuals with psychosis: moderation by adolescent cannabis use. Schizophr Bull 42:1496–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart CL, Marvin CB, Silver R, Smith EE (2012) Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 37:586–608

    Article  CAS  Google Scholar 

  • Hochberger WC, Hill SK, Nelson CL, Reilly JL, Keefe RS, Pearlson GD, Keshavan MS, Tamminga CA, Clementz BA, Sweeney JA (2016) Unitary construct of generalized cognitive ability underlying BACS performance across psychotic disorders and in their first-degree relatives. Schizophr Res 170:156–161

    Article  PubMed  CAS  Google Scholar 

  • Huang MC, Yang SY, Lin SK, Chen KY, Chen YY, Kuo CJ, Hung YN (2016) Risk of cardiovascular diseases and stroke events in methamphetamine users: a 10-year follow-up study. J Clin Psychiatry 77:1396–1403

    Article  PubMed  Google Scholar 

  • Iudicello JE, Woods SP, Vigil O, Scott JC, Cherner M, Heaton RK, Atkinson JH, Grant I, Group HIVNRC (2010) Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol 32:704–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Jevtovic-Todorovic V, Wozniak DF, Benshoff ND, Olney JW (2001) A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res 895:264–267

    Article  PubMed  CAS  Google Scholar 

  • Joe Laidler KA (2005) The rise of club drugs in a heroin society: the case of Hong Kong. Subst Use Misuse 40:1257–1278

    Article  PubMed  Google Scholar 

  • Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J, Galloway GP, Koeppe RA, Kilbourn MR, Robbins T, Schuster CR (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology 185:327–338

    Article  PubMed  CAS  Google Scholar 

  • Kalechstein AD, Newton TF, Green M (2003) Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. J Neuropsychiatry Clin Neurosci 15:215–220

    Article  PubMed  CAS  Google Scholar 

  • Kalsi SS, Wood DM, Dargan PI (2011) The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use. Emerging Health Threats J 4:7107

    Article  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry 7:837–844

    Article  PubMed  CAS  Google Scholar 

  • Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L (2004) The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res 68:283–297

    Article  PubMed  Google Scholar 

  • Keefe RS, Poe M, Walker TM, Kang JW, Harvey PD (2006) The Schizophrenia Cognition Rating Scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. Am J Psychiatry 163:426–432

    Article  PubMed  Google Scholar 

  • Keefe RS, Harvey PD, Goldberg TE, Gold JM, Walker TM, Kennel C, Hawkins K (2008) Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr Res 102:108–115

    Article  PubMed  Google Scholar 

  • Liao Y, Tang J, Corlett PR, Wang X, Yang M, Chen H, Liu T, Chen X, Hao W, Fletcher PC (2011) Reduced dorsal prefrontal gray matter after chronic ketamine use. Biol Psychiatry 69:42–48

    Article  PubMed  CAS  Google Scholar 

  • London ED (2016) Impulsivity, stimulant abuse, and dopamine receptor signaling. Adv Pharmacol 76:67–84

    Article  PubMed  CAS  Google Scholar 

  • London ED, Kohno M, Morales AM, Ballard ME (2015) Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 1628:174–185

    Article  PubMed  CAS  Google Scholar 

  • Mendrek A, Monterosso J, Simon SL, Jarvik M, Brody A, Olmstead R, Domier CP, Cohen MS, Ernst M, London ED (2006) Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav 31:833–844

    Article  PubMed  Google Scholar 

  • Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38:942–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan CJ, Monaghan L, Curran HV (2004a) Beyond the K-hole: a 3-year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction 99:1450–1461

    Article  PubMed  Google Scholar 

  • Morgan CJ, Riccelli M, Maitland CH, Curran HV (2004b) Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend 75:301–308

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJ, Muetzelfeldt L, Curran HV (2009) Ketamine use, cognition and psychological wellbeing: a comparison of frequent, infrequent and ex-users with polydrug and non-using controls. Addiction 104:77–87

    Article  PubMed  Google Scholar 

  • Morgan CJ, Muetzelfeldt L, Curran HV (2010) Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction 105:121–133

    Article  PubMed  Google Scholar 

  • Morgan CJ, Curran HV, Independent Scientific Committee on D (2012) Ketamine use: a review. Addiction 107:27–38

    Article  PubMed  Google Scholar 

  • Okita K, Ghahremani DG, Payer DE, Robertson CL, Dean AC, Mandelkern MA, London ED (2016) Emotion dysregulation and amygdala dopamine D2-type receptor availability in methamphetamine users. Drug Alcohol Depend 161:163–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okita K, Morales AM, Dean AC, Johnson MC, Lu V, Farahi J, Mandelkern MA, London ED (2017) Striatal dopamine D1-type receptor availability: no difference from control but association with cortical thickness in methamphetamine users. Mol Psychiatry

  • Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 129:167–179

    Article  PubMed  CAS  Google Scholar 

  • Rabiner EA (2007) Imaging of striatal dopamine release elicited with NMDA antagonists: is there anything there to be seen? J Psychopharmacol 21:253–258

    Article  PubMed  CAS  Google Scholar 

  • Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychol Rev 17(3):275–297

    Article  PubMed  Google Scholar 

  • Simon SL, Domier C, Carnell J, Brethen P, Rawson R, Ling W (2000) Cognitive impairment in individuals currently using methamphetamine. Am J Add Am Acad Psych Alcoholism Addict 9:222–231

    CAS  Google Scholar 

  • Simon SL, Dean AC, Cordova X, Monterosso JR, London ED (2010) Methamphetamine dependence and neuropsychological functioning: evaluating change during early abstinence. J Stud Alcohol Drugs 71:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Li Q, Li Q, Zhang Y, Liu D, Jiang H, Pan F, Yew DT (2014) Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys. Addict Biol 19:185–194

    Article  PubMed  CAS  Google Scholar 

  • Tang WK, Liang HJ, Lau CG, Tang A, Ungvari GS (2013) Relationship between cognitive impairment and depressive symptoms in current ketamine users. J Stud Alcohol Drugs 74:460–468

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Wong AH, Liu F (2012) Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res 1476:154–163

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zheng D, Xu J, Lam W, Yew DT (2013) Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front Neuroanat 7:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang LJ, Lin PY, Lee Y, Huang YC, Hsu ST, Hung CF, Chen CK, Chen YC, Wang YL, Tsai MC (2016) Validation of the Chinese version of Brief Assessment of Cognition in Schizophrenia. Neuropsychiatr Dis Treat 12:2819–2826

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L-J, Huang Y-C, Hung C-F, Chen C-K, Chen Y-C, Lee P-Y, Wang S-M, Liu M-H, Lin C-J, Hsu S-T (2017) The chinese version of the brief assessment of cognition in schizophrenia: Data of a large-scale mandarin-speaking population. Arch Clin Neuropsychol 32(3):289–296

    Article  PubMed  Google Scholar 

  • Yamamuro K, Makinodan M, Kimoto S, Kishimoto N, Morimoto T, Toritsuka M, Matsuoka K, Takebayashi Y, Takata T, Takahashi M, Tanimura Y, Nishihata Y, Matsuda Y, Ota T, Yoshino H, Iida J, Kishimoto T (2015) Differential patterns of blood oxygenation in the prefrontal cortex between patients with methamphetamine-induced psychosis and schizophrenia. Sci Rep 5:12107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Li Q, Wang D, Shi L, Lu G, Sun L, Wang L, Zhu W, Mak YT, Wong N, Wang Y, Pan F, Yew DT (2012) Mapping the central effects of chronic ketamine administration in an adolescent primate model by functional magnetic resonance imaging (fMRI). Neurotoxicology 33:70–77

    Article  PubMed  CAS  Google Scholar 

  • Zhong N, Jiang H, Du J, Zhao Y, Sun H, Xu D, Li C, Zhuang W, Li X, Hashimoto K, Zhao M (2016) The cognitive impairments and psychological wellbeing of methamphetamine dependent patients compared with health controls. Prog Neuro-Psychopharmacol Biol Psychiatry 69:31–37

    Article  CAS  Google Scholar 

Download references

Funding sources

This study was supported by grants from Ministry of Science and Technology, Taiwan (98-2314-B-182-001-MY3, 101-2314-B-182-080, 102-2314-B-182-007, 103-2628-B-532-001-MY3, and 106-2314-B-532-005-MY3), Chang Gung Memorial Hospital, Taiwan (CMRPG2D0261, CMRPG8C1291, and CMRPG8D0481), and Taipei City Hospital, Taiwan (10601-62-018 and 10701-62-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chyi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dr Chih-Ken Chen as the co-first author for equivalent contribution to the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LJ., Chen, CK., Lin, SK. et al. Cognitive profile of ketamine-dependent patients compared with methamphetamine-dependent patients and healthy controls. Psychopharmacology 235, 2113–2121 (2018). https://doi.org/10.1007/s00213-018-4910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4910-z

Keywords

Navigation