, Volume 235, Issue 7, pp 1955–1965 | Cite as

Efficacy and side effects of baclofen and the novel GABAB receptor positive allosteric modulator CMPPE in animal models for alcohol and cocaine addiction

  • Valentina Vengeliene
  • Tatiane T. Takahashi
  • Olga A. Dravolina
  • Irina Belozertseva
  • Edwin Zvartau
  • Anton Y. Bespalov
  • Rainer Spanagel
Original Investigation



Preclinical studies suggest that the GABAB receptor is a potential target for treatment of substance use disorders. However, recent clinical trials report adverse effects in patients treated with the GABAB receptor agonist baclofen and even question efficacy. How can the discrepancy between preclinical and clinical findings be explained?


To test efficacy and adverse effects of baclofen and the novel GABAB positive allosteric modulator (PAM) CMPPE in rat addiction models, which were developed in accordance with DSM.


We used a well-characterized rat model of long-term alcohol consumption with repeated deprivation phases that result in compulsive alcohol drinking in a relapse situation, and a rat model of long-term intravenous cocaine self-administration resulting in key symptoms of addictive behavior. We tested repeated baclofen (0, 1, and 3 mg/kg; i.p.) and CMPPE doses (0, 10, and 30 mg/kg; i.p.) in relapse-like situations, in either alcohol or cocaine addicted-like rats.


Baclofen produced a weak anti-relapse effect at the highest dose in alcohol addicted-like rats, and this effect was mainly due to the treatment-induced sedation. CMPPE had a better profile, with a dose-dependent reduction of relapse-like alcohol drinking and without any signs of sedation. The cue-induced cocaine-seeking response was completely abolished by both compounds.


Positive allosteric modulation of the GABAB receptor provides efficacy, and no observable side effects in relapse behavior whereas baclofen may cause, not only sedation, but also considerable impairment of food intake or metabolism. However, targeting GABAB receptors may be effective in reducing certain aspects of addictive-like behavior, such as cue-reactivity.


Addiction Ethanol Cocaine Relapse Baclofen CMPPE 



We would like to thank Sabrina Koch and Elena Büchler for the excellent technical assistance.

Funding information

Financial support for this work was provided by the Bundesministerium für Bildung und Forschung (e:Med program, FKZ: 01ZX1311A (Spanagel et al. 2013)). TTT was funded by CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 70040-020, Brazil.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Agabio R, Colombo G (2014) GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci 8:140CrossRefPubMedPubMedCentralGoogle Scholar
  2. ANSM (2017) Le Baclofène en vie réelle en France entre 2009 et 2015. Usages, persistance et sécurité, et comparaison aux traitements des problèmes d’alcool ayant une autorisation de mise sur le marché. Rapport – 25th of July, 2017 -
  3. Beraha EM, Salemink E, Goudriaan AE, Bakker A, de Jong D, Smits N, Zwart JW, Geest DV, Bodewits P, Schiphof T, Defourny H, van Tricht M, van den Brink W, Wiers RW (2016) Efficacy and safety of high-dose baclofen for the treatment of alcohol dependence: a multicentre, randomised, double-blind controlled trial. Eur Neuropsychopharmacol 26:1950–1959CrossRefPubMedGoogle Scholar
  4. Besheer J, Lepoutre V, Hodge CW (2004) GABA(B) receptor agonists reduce operant ethanol self-administration and enhance ethanol sedation in C57BL/6J mice. Psychopharmacology 174:358–366CrossRefPubMedGoogle Scholar
  5. Beveridge TJ, Smith HR, Porrino LJ (2013) Differential development of tolerance to the functional and behavioral effects of repeated baclofen treatment in rats. Pharmacol Biochem Behav 106:27–32CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braillon A, Naudet F (2017) Baclofen and alcohol use disorders: from miracle to mirage. Eur Neuropsychopharmacol 27:691–692CrossRefPubMedGoogle Scholar
  7. Brebner K, Froestl W, Andrews M, Phelan R, Roberts DC (1999) The GABA(B) agonist CGP 44532 decreases cocaine self-administration in rats: demonstration using a progressive ratio and a discrete trials procedure. Neuropharmacology 38:1797–1804CrossRefPubMedGoogle Scholar
  8. Brebner K, Ahn S, Phillips AG (2005) Attenuation of d-amphetamine self-administration by baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacology 177:409–417CrossRefPubMedGoogle Scholar
  9. Brown JW, Moeller A, Schmidt M, Turner SC, Nimmrich V, Ma J, Rueter LE, van der Kam E, Zhang M (2016) Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology 101:358–369CrossRefPubMedGoogle Scholar
  10. Cannella N, Halbout B, Uhrig S, Evrard L, Corsi M, Corti C, Deroche-Gamonet V, Hansson AC, Spanagel R (2013) The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38:2048–2056CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cannella N, Cosa-Linan A, Büchler E, Falfan-Melgoza C, Weber-Fahr W, Spanagel R (2018) In vivo structural imaging in rats reveals neuroanatomical correlates of behavioral sub-dimensions of cocaine addiction. Addict Biol 23:182–195CrossRefPubMedGoogle Scholar
  12. Colombo G, Serra S, Brunetti G, Atzori G, Pani M, Vacca G, Addolorato G, Froestl W, Carai MA, Gessa GL (2002) The GABA(B) receptor agonists baclofen and CGP 44532 prevent acquisition of alcohol drinking behaviour in alcohol-preferring rats. Alcohol Alcohol 37:499–503CrossRefPubMedGoogle Scholar
  13. Colombo G, Serra S, Brunetti G, Vacca G, Carai MA, Gessa GL (2003) Suppression by baclofen of alcohol deprivation effect in Sardinian alcohol-preferring (sP) rats. Drug Alcohol Depend 70(1):105–108CrossRefPubMedGoogle Scholar
  14. Colombo G, Serra S, Vacca G, Carai MA, Gessa GL (2006) Baclofen-induced suppression of alcohol deprivation effect in Sardinian alcohol-preferring (sP) rats exposed to different alcohol concentrations. Eur J Pharmacol 550:123–126CrossRefPubMedGoogle Scholar
  15. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017CrossRefPubMedGoogle Scholar
  16. Di Ciano P, Everitt BJ (2003) The GABA(B) receptor agonist baclofen attenuates cocaine- and heroin-seeking behavior by rats. Neuropsychopharmacology 28:510–518CrossRefPubMedGoogle Scholar
  17. Filip M, Frankowska M (2007) Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses. Eur J Pharmacol 571:166–173CrossRefPubMedGoogle Scholar
  18. Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec L, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF (2015) GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88:36–47CrossRefPubMedGoogle Scholar
  19. Froger-Colléaux C, Castagné V (2016) Effects of baclofen and raclopride on reinstatement of cocaine self-administration in the rat. Eur J Pharmacol 777:147–155CrossRefPubMedGoogle Scholar
  20. Gjoni T, Urwyler S (2008) Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABA B receptor desensitization. Neuropharmacology 55:1293–1299CrossRefPubMedGoogle Scholar
  21. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O, Piazza PV (2010) Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328:1709–1712CrossRefPubMedGoogle Scholar
  22. Kiel LB, Hoegberg LC, Jansen T, Petersen JA, Dalhoff KP (2015) A nationwide register-based survey of baclofen toxicity. Basic Clin Pharmacol Toxicol 116:452–456CrossRefPubMedGoogle Scholar
  23. Lehmann A, Mattsson JP, Edlund A, Johansson T, Ekstrand AJ (2003) Effects of repeated administration of baclofen to rats on GABA B receptor binding sites and subunit expression in the brain. Neurochem Res 28:387–393CrossRefPubMedGoogle Scholar
  24. Maccioni P, Zaru A, Loi B, Lobina C, Carai MA, Gessa GL, Capra A, Mugnaini C, Pasquini S, Corelli F, Hyytiä P, Lumeng L, Colombo G (2012) Comparison of the effect of the GABAΒ receptor agonist, baclofen, and the positive allosteric modulator of the GABAB receptor, GS39783, on alcohol self-administration in 3 different lines of alcohol-preferring rats. Alcohol Clin Exp Res 36:1748–1766CrossRefPubMedPubMedCentralGoogle Scholar
  25. Munzar P, Kutkat SW, Miller CR, Goldberg SR (2000) Failure of baclofen to modulate discriminative-stimulus effects of cocaine or methamphetamine in rats. Eur J Pharmacol 408:169–174CrossRefPubMedGoogle Scholar
  26. Paterson NE, Froestl W, Markou A (2004) The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology 172:179–186CrossRefPubMedGoogle Scholar
  27. Pelissier F, de Haro L, Cardona F, Picot C, Puskarczyk E, Sapori JM, Tournoud C, Franchitto N (2017) Self-poisoning with baclofen in alcohol-dependent patients: national reports to French poison control centers, 2008-2013. Clin Toxicol 55:275–284CrossRefGoogle Scholar
  28. Perdona' E, Costantini VJ, Tessari M, Martinelli P, Carignani C, Valerio E, Mok MH, Zonzini L, Visentini F, Gianotti M, Gordon L, Rocheville M, Corsi M, Capelli AM (2011) In vitro and in vivo characterization of the novel GABAB receptor positive allosteric modulator, 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]pyrimidin-7-yl]-2-piperidinyl}ethanol (CMPPE). Neuropharmacology 61:957–966CrossRefPubMedGoogle Scholar
  29. Reynaud M, Aubin HJ, Trinquet F, Zakine B, Dano C, Dematteis M, Trojak B, Paille F, Detilleux M (2017) A randomized, placebo-controlled study of high-dose baclofen in alcohol-dependent patients-the ALPADIR study. Alcohol Alcohol 52:439–446CrossRefPubMedGoogle Scholar
  30. Roberts DC, Andrews MM, Vickers GJ (1996) Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacology 15:417–423CrossRefPubMedGoogle Scholar
  31. Slattery DA, Markou A, Froestl W, Cryan JF (2005) The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Neuropsychopharmacology 30:2065–2072CrossRefPubMedGoogle Scholar
  32. Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705CrossRefPubMedGoogle Scholar
  33. Spanagel R (2017) Animal models of addiction. Dialogues Clin Neurosci 19(2)Google Scholar
  34. Spanagel R, Hölter SM (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol Alcohol 34:231–243CrossRefPubMedGoogle Scholar
  35. Spanagel R, Durstewitz D, Hansson A, Heinz A, Kiefer F, Köhr G, Matthäus F, Nöthen MM, Noori HR, Obermayer K, Rietschel M, Schloss P, Scholz H, Schumann G, Smolka M, Sommer W, Vengeliene V, Walter H, Wurst W, Zimmermann US, Addiction GWAS Resource Group., Stringer S, Smits Y, Derks EM (2013) A systems medicine research approach for studying alcohol addiction. Addict Biol 18:883–896CrossRefPubMedGoogle Scholar
  36. Takahashi TT, Vengeliene V, Spanagel R (2017) Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats. Psychopharmacology 234:1741–1748CrossRefPubMedGoogle Scholar
  37. Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vengeliene V, Celerier E, Chaskiel L, Penzo F, Spanagel R (2009) Compulsive alcohol drinking in rodents. Addict Biol 14:384–396CrossRefPubMedGoogle Scholar
  39. Vengeliene V, Leonardi-Essmann F, Sommer WH, Marston HM, Spanagel R (2010) Glycine transporter-1 blockade leads to persistently reduced relapse-like alcohol drinking in rats. Biol Psychiatry 68:704–711CrossRefPubMedGoogle Scholar
  40. Vengeliene V, Noori HR, Spanagel R (2013) The use of a novel drinkometer system for assessing pharmacological treatment effects on ethanol consumption in rats. Alcohol Clin Exp Res 37:E322–E328CrossRefPubMedGoogle Scholar
  41. Vengeliene V, Bilbao A, Spanagel R (2014) The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol 48:313–320CrossRefPubMedGoogle Scholar
  42. Vengeliene V, Moeller A, Meinhardt MW, Beardsley PM, Sommer WH, Spanagel R, Bespalov A (2016) The Calpain inhibitor A-705253 attenuates alcohol-seeking and relapse with low side-effect profile. Neuropsychopharmacology 41:979–988CrossRefPubMedGoogle Scholar
  43. Walker BM, Koob GF (2007) The gamma-aminobutyric acid-B receptor agonist baclofen attenuates responding for ethanol in ethanol-dependent rats. Alcohol Clin Exp Res 31:11–18CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xi ZX, Stein EA (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther 290:1369–1374PubMedGoogle Scholar
  45. Young KA, Franklin TR, Roberts DC, Jagannathan K, Suh JJ, Wetherill RR, Wang Z, Kampman KM, O'Brien CP, Childress AR (2014) Nipping cue reactivity in the bud: baclofen prevents limbic activation elicited by subliminal drug cues. J Neurosci 34:5038–5043CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Valentina Vengeliene
    • 1
  • Tatiane T. Takahashi
    • 1
  • Olga A. Dravolina
    • 2
  • Irina Belozertseva
    • 2
  • Edwin Zvartau
    • 2
  • Anton Y. Bespalov
    • 2
    • 3
  • Rainer Spanagel
    • 1
  1. 1.Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  2. 2.Valdman Institute of PharmacologyPavlov First State Medical UniversitySt. PetersburgRussia
  3. 3.ExcivaHeidelbergGermany

Personalised recommendations