Advertisement

Psychopharmacology

, Volume 235, Issue 4, pp 1211–1219 | Cite as

Differential effects of α4β2 nicotinic receptor antagonists and partial-agonists on contextual fear extinction in male C57BL/6 mice

  • Munir Gunes Kutlu
  • Jessica M. Tumolo
  • Courtney Cann
  • Thomas J. Gould
Original Investigation

Abstract

Rationale

Numerous studies have attributed the psychopathology of post-traumatic stress disorder (PTSD) to maladaptive behavioral responses such as an inability to extinguish fear. While exposure therapies are mostly effective in treating these disorders by enhancing extinction learning, relapse of PTSD symptoms is common. Although several studies indicated a role for cholinergic transmission and nicotinic acetylcholine receptors (nAChRs) in anxiety and stress disorder symptomatology, very little is known about the specific contribution of nAChRs to fear extinction

Objectives

In the present study, we examined the effects of inhibition and desensitization of α4β2 nAChRs via a full antagonist (Dihydro-beta-erythroidine (DhβE)) and two α4β2 nAChR partial-agonists (varenicline and sazetidine-A) on contextual fear extinction, locomotor activity, and spontaneous recovery of contextual fear in mice.

Methods

We trained and tested the subjects in a contextual fear extinction as well as an open field paradigm and spontaneous recovery following injections of DhβE, varenicline, and sazetidine-A.

Results

Our results demonstrated that lower doses of DhβE (1 mg/kg) and sazetidine-A (0.01 mg/kg) enhanced contextual fear extinction whereas higher doses of varenicline (0.1 mg/kg) and sazetidine-A (0.1 mg/kg) resulted in impaired contextual fear extinction. However, the higher dose of sazetidine-A (0.1 mg/kg) decreased locomotor activity, which may contribute to increased freezing response observed during fear extinction. Finally, we found that the low dose of DhβE, but not sazetidine-A, also decreased spontaneous recovery of contextual fear following fear extinction.

Conclusions

Overall, these results suggest that inhibition and desensitization of α4β2 nAChRs enhance extinction of contextual fear memories. This suggests that modulation of α4β2 nAChRs may be employed as an alternative pharmacological strategy to aid exposure therapies associated with PTSD by augmenting contextual fear extinction processes.

Keywords

Nicotinic receptors Fear extinction Spontaneous recovery PTSD 

Notes

Acknowledgements

This work was funded with grant support from the National Institute on Drug Abuse (T.J.G., DA017949; 1U01DA041632), Jean Phillips Shibley Endowment, and Penn State Biobehavioral Health Department. We declare no potential conflict of interest.

References

  1. Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265(3):1455–1473PubMedGoogle Scholar
  2. Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psycho 67(3):370–375.  https://doi.org/10.1037/h0026779 CrossRefGoogle Scholar
  3. Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P (1998) Trauma and posttraumatic stress disorder in the community: the 1996 Detroit area survey of trauma. Arch Gen Psychiatry 55(7):626–632.  https://doi.org/10.1001/archpsyc.55.7.626 CrossRefPubMedGoogle Scholar
  4. Breslau N, Davis GC, Schultz LR (2003) Posttraumatic stress disorder and the incidence of nicotine, alcohol, and other drug disorders in persons who have experienced trauma. Arch Gen Psychiatry 60(3):289–294.  https://doi.org/10.1001/archpsyc.60.3.289 CrossRefPubMedGoogle Scholar
  5. Breslau N, Novak SP, Kessler RC (2004) Psychiatric disorders and stages of smoking. Biol Psychiatry 55(1):69–76.  https://doi.org/10.1016/S0006-3223(03)00317-2 CrossRefPubMedGoogle Scholar
  6. Campbell AR, Anderson KD (2010) Mental health stability in veterans with posttraumatic stress disorder receiving varenicline. Am J Health Syst Pharm 67(21):1832–1837.  https://doi.org/10.2146/ajhp100196 CrossRefPubMedGoogle Scholar
  7. Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, … Shrikhande A (2005). Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48(10):3474–3477. doi: https://doi.org/10.1021/jm050069n
  8. Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP (2000) Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 21(6):211–217.  https://doi.org/10.1016/S0165-6147(00)01489-9 CrossRefPubMedGoogle Scholar
  9. Craske MG, Mystkowski J (2006) Exposure therapy and extinction: clinical studies. In: Craske M, Hermans D (Eds) Fear and learning: contemporary perspectives. American Psychological Association, Washington, DCGoogle Scholar
  10. Davis JA, Gould TJ (2006) The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharm 184(3–4):345–352.  https://doi.org/10.1007/s00213-005-0047-y CrossRefGoogle Scholar
  11. Davis JA, James JR, Siegel SJ, Gould TJ (2005) Withdrawal from chronic nicotine administration impairs contextual fear conditioning in C57BL/6 mice. J Neurosci 25(38):8708–8713.  https://doi.org/10.1523/JNEUROSCI.2853-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davis JA, Porter J, Gould TJ (2006) Nicotine enhances both foreground and background contextual fear conditioning. Neurosci Lett 394(3):202–205CrossRefPubMedGoogle Scholar
  13. Faessel HM, Smith BJ, Gibbs MA, Gobey JS, Clark DJ, Burstein AH (2006) Single-dose pharmacokinetics of varenicline, a selective nicotinic receptor partial agonist, in healthy smokers and nonsmokers. J Clin Pharmacol 46(9):991–998.  https://doi.org/10.1177/0091270006290669 CrossRefPubMedGoogle Scholar
  14. Fenster CP, Rains MF, Noerager B, Quick MW, Lester RA (1997) Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J Neurosci 17(15):5747–5759PubMedGoogle Scholar
  15. Gibbons RD, Mann JJ (2013) Varenicline, smoking cessation, and neuropsychiatric adverse events. Am J Psychiatry 170(12):1460–1467.  https://doi.org/10.1176/appi.ajp.2013.12121599 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gould TJ (2003) Nicotine produces a within-subject enhancement of contextual fear conditioning in C57BL/6 mice independent of sex. Integr Psychol Behav Sci 38(2):124–132.  https://doi.org/10.1007/BF02688830 CrossRefGoogle Scholar
  17. Gould TJ, Higgins JS (2003) Nicotine enhances contextual fear conditioning in C57BL/6J mice at 1 and 7 days post-training. Neurobiol Learn Mem 80(2):147–157.  https://doi.org/10.1016/S1074-7427(03)00057-1 CrossRefPubMedGoogle Scholar
  18. Gould TJ, Lommock JA (2003) Nicotine enhances contextual fear conditioning and ameliorates ethanol-induced deficits in contextual fear conditioning. Behav Neurosci 117(6):1276–1282.  https://doi.org/10.1037/0735-7044.117.6.1276 CrossRefPubMedGoogle Scholar
  19. Gould TJ, Wehner JM (1999) Nicotine enhancement of contextual fear conditioning. Behav Brain Res 102(1):31–39.  https://doi.org/10.1016/S0166-4328(98)00157-0 CrossRefPubMedGoogle Scholar
  20. Gould TJ, Feiro O, Moore D (2004) Nicotine enhances trace cued fear conditioning but not delay cued fear conditioning in C57BL/6 mice. Behav Brain Res 155(1):167–173CrossRefPubMedGoogle Scholar
  21. Hawkins KA, Cougle JR (2013) The effects of nicotine on intrusive memories in nonsmokers. Exp Clin Psychopharm 21(6):434–442.  https://doi.org/10.1037/a0033966 CrossRefGoogle Scholar
  22. Imel ZE, Laska K, Jakupcak M, Simpson TL (2013) Meta-analysis of dropout in treatments for posttraumatic stress disorder. J Consult Clin Psychol 81(3):394–404.  https://doi.org/10.1037/a0031474 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koenen KC, Hitsman B, Lyons MJ, Niaura R, McCaffery J, Goldberg J, … Tsuang M (2005) A twin registry study of the relationship between posttraumatic stress disorder and nicotine dependence in men. Arch Gen Psychiatry 62(11):1258–1265. doi: https://doi.org/10.1001/archpsyc.62.11.1258
  24. Krystal JH, Davis LL, Neylan TC, Raskind MA, Schnurr PP, Stein MB, … Huang GD (2017) It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD psychopharmacology working group. Biol Psychiatry 82(7): e51–e59. doi: https://doi.org/10.1016/j.biopsych.2017.03.007
  25. Kutlu MG, Gould TJ (2014) Acute nicotine delays extinction of contextual fear in mice. Behav Brain Res 263:133–137.  https://doi.org/10.1016/j.bbr.2014.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kutlu MG, Gould TJ (2015) Nicotine modulation of fear memories and anxiety: implications for learning and anxiety disorders. Biochem Pharmacol 97(4):498–511.  https://doi.org/10.1016/j.bcp.2015.07.029 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kutlu MG, Holliday E, Gould TJ (2016a) High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction. Neurobiol Learn Mem 128:17–22CrossRefPubMedGoogle Scholar
  28. Kutlu MG, Tumolo JM, Holliday E, Garrett B, Gould TJ (2016b) Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala. Learn Mem 23(8):405–414.  https://doi.org/10.1101/lm.042655.116 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kutlu MG, Garrett B, Gadiwalla S, Tumolo JM, Gould TJ (2017a) Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity. Neurobiol Learn Mem 145:143–150CrossRefPubMedGoogle Scholar
  30. Kutlu MG, Zeid D, Tumolo JM, Gould TJ (2017b) Pre-adolescent and adolescent mice are less sensitive to the effects of acute nicotine on extinction and spontaneous recovery. Brain Res Bull.  https://doi.org/10.1016/j.brainresbull.2017.06.010 PubMedGoogle Scholar
  31. Loughead J, Ray R, Wileyto EP, Ruparel K, Sanborn P, Siegel S et al (2010) Effects of the α4β2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol Psychiatry 67(8):715–721.  https://doi.org/10.1016/j.biopsych.2010.01.016 CrossRefPubMedGoogle Scholar
  32. Luetje CW, Wada K, Rogers S, Abramson SN, Tsuji K, Heinemann S, Patrick J (1990) Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J Neurochem 55(2):632–640.  https://doi.org/10.1111/j.1471-4159.1990.tb04180.x CrossRefPubMedGoogle Scholar
  33. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at α4β2 and a full agonist at α7 neuronal nicotinic receptors. Mol Pharm 70(3):801–805CrossRefGoogle Scholar
  34. Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, Frey JM, Siegel S, Lerman C (2009) Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 65(2):144–149.  https://doi.org/10.1016/j.biopsych.2008.08.028 CrossRefPubMedGoogle Scholar
  35. Raybuck JD, Portugal GS, Lerman C, Gould TJ (2008) Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice. Behav Neurosci 122(5):1166–1171.  https://doi.org/10.1037/a0012601 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, … Sands SB (2007). Pharmacological profile of the α 4 β 2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52(3):985–994. doi: https://doi.org/10.1016/j.neuropharm.2006.10.016
  37. Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-trauma reactions. Ann N Y Acad Sci 1008(1):112–121.  https://doi.org/10.1196/annals.1301.012 CrossRefPubMedGoogle Scholar
  38. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13(2):596–604PubMedGoogle Scholar
  39. Tian S, Gao J, Han L, Fu J, Li C, Li Z (2008) Prior chronic nicotine impairs cued fear extinction but enhances contextual fear conditioning in rats. Neuroscience 153(4):935–943.  https://doi.org/10.1016/j.neuroscience.2008.03.005 CrossRefPubMedGoogle Scholar
  40. Turner JR, Castellano LM, Blendy JA (2010) Nicotinic partial agonists varenicline and sazetidine-a have differential effects on affective behavior. J Pharmacol Exp Ther 334(2):665–672.  https://doi.org/10.1124/jpet.110.166280 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Turner JR, Wilkinson DS, Poole RL, Gould TJ, Carlson GC, Blendy JA (2013) Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacology 38(10):2035–2047.  https://doi.org/10.1038/npp.2013.105 CrossRefPubMedPubMedCentralGoogle Scholar
  42. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113:3–18.  https://doi.org/10.1016/j.nlm.2013.11.014 CrossRefPubMedGoogle Scholar
  43. Wada E, Wada K, Boulter JIM, Deneris E, Heinemann S, Patrick JIM, Swanson LW (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284(2):314–335.  https://doi.org/10.1002/cne.902840212 CrossRefPubMedGoogle Scholar
  44. Xiao Y, Fan H, Musachio JL, Wei ZL, Chellappan SK, Kozikowski AP, Kellar KJ (2006) Sazetidine-A, a novel ligand that desensitizes α4β2 nicotinic acetylcholine receptors without activating them. Mol Pharmacol 70(4):1454–1460.  https://doi.org/10.1124/mol.106.027318 CrossRefPubMedGoogle Scholar
  45. Ziedonis D, Hitsman B, Beckham JC, Zvolensky M, Adler LE, Audrain-McGovern J, … Calhoun PS (2008). Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nicotine Tob Res 10(12):1691–1715. doi: https://doi.org/10.1080/14622200802443569
  46. Zwart R, Carbone AL, Moroni M, Bermudez I, Mogg AJ, Folly EA, … Heinz BA (2008) Sazetidine-A is a potent and selective agonist at native and recombinant α4β2 nicotinic acetylcholine receptors. Mol Pharmacol 73(6):1838–1843. doi: https://doi.org/10.1124/mol.108.045104

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Munir Gunes Kutlu
    • 1
  • Jessica M. Tumolo
    • 2
  • Courtney Cann
    • 1
  • Thomas J. Gould
    • 1
  1. 1.The Department of Biobehavioral HealthPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of PsychologyTemple UniversityPhiladelphiaUSA

Personalised recommendations