, Volume 235, Issue 4, pp 1029–1039 | Cite as

Higher schizotypy predicts better metabolic profile in unaffected siblings of patients with schizophrenia

  • E. Cem Atbasoglu
  • Guvem Gumus-Akay
  • Sinan Guloksuz
  • Meram Can Saka
  • Alp Ucok
  • Koksal Alptekin
  • Sevim Gullu
  • Jim van Os
Original Investigation



Type 2 diabetes (T2D) is more frequent in schizophrenia (Sz) than in the general population. This association is partly accounted for by shared susceptibility genetic variants.


We tested the hypotheses that a genetic predisposition to Sz would be associated with higher likelihood of insulin resistance (IR), and that IR would be predicted by subthreshold psychosis phenotypes.


Unaffected siblings of Sz patients (n = 101) were compared with a nonclinical sample (n = 305) in terms of IR, schizotypy (SzTy), and a behavioural experiment of “jumping to conclusions”. The measures, respectively, were the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Structured Interview for Schizotypy-Revised (SIS-R), and the Beads Task (BT). The likelihood of IR was examined in multiple regression models that included sociodemographic, metabolic, and cognitive parameters alongside group status, SIS-R scores, and BT performance.


Insulin resistance was less frequent in siblings (31.7%) compared to controls (43.3%) (p < 0.05), and negatively associated with SzTy, as compared among the tertile groups for the latter (p < 0.001). The regression model that examined all relevant parameters included the tSzTy tertiles, TG and HDL-C levels, and BMI, as significant predictors of IR. Lack of IR was predicted by the highest as compared to the lowest SzTy tertile [OR (95%CI): 0.43 (0.21–0.85), p = 0.015].


Higher dopaminergic activity may contribute to both schizotypal features and a favourable metabolic profile in the same individual. This is compatible with dopamine’s regulatory role in glucose metabolism via indirect central actions and a direct action on pancreatic insulin secretion. The relationship between dopaminergic activity and metabolic profile in Sz must be examined in longitudinal studies with younger unaffected siblings.


Dopamine Genetics Insulin resistance Schizophrenia Schizotypy Type 2 diabetes mellitus 


Funding sources

This work was supported by the Scientific and Technological Research Council of Turkey (Program 1001, Project No: 112S475) and the 7th Frame Work Programme of the European Union (Grant Agreement No. HEALTH-F2-2009-241909, Project EU-GEI).

Compliance with ethical standards

The complete details of the entire study and procedures were in accordance with the Declaration of Helsinki. Written informed consent was obtained from each participant. This study was approved by the Medical Ethics Committee of Ankara University, Ankara, Turkey (approval #33-720).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2017_4818_MOESM1_ESM.docx (98 kb)
Supplementary Table 1 (DOCX 98 kb)
213_2017_4818_MOESM2_ESM.docx (90 kb)
Supplementary Table 2 (DOCX 90 kb)
213_2017_4818_MOESM3_ESM.docx (92 kb)
Supplementary Table 3 (DOCX 92 kb)


  1. Alberti KG, Zimmet P, Shaw J, for the IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062CrossRefPubMedGoogle Scholar
  2. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860. CrossRefPubMedGoogle Scholar
  3. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90. CrossRefGoogle Scholar
  4. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. Washington, DC. CrossRefGoogle Scholar
  5. Andreasen NC, Flaum M, Arndt S (1992) The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 49(8):615–623. CrossRefPubMedGoogle Scholar
  6. Balijepalli C, Druyts E, Siliman G, Joffres M, Thorlund K, Mills EJ (2017) Hypoglycemia: a review of definitions used in clinical trials evaluating antihyperglycemic drugs for diabetes. Clin Epidemiol 23:291–296CrossRefGoogle Scholar
  7. Barrantes-Vidal N, Grant P, Kwapil TR (2015) The role of schizotypy in the study of the etiology of schizophrenia spectrum disorders. Schizophr Bull 41(suppl 2):S408–S416. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baskak B, Ozel ET, Atbasoglu EC, Baskak SC (2008) Peculiar word use as a possible trait marker in schizophrenia. Schizophr Res 103(1–3):311–317. CrossRefPubMedGoogle Scholar
  9. Binbay T, Drukker M, Elbi H, Aksu Tanık F, Ozkinay F, Onay H, Zagli N, van Os J, Alptekin K (2012) Testing the psychosis continuum: differential impact of genetic and nongenetic risk factors and comorbid psychopathology across the entire spectrum of psychosis. Schizophr Bull 38(5):992–1002. CrossRefPubMedGoogle Scholar
  10. Braff DL, Freedman R, Schork NJ, Gottesman II (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 33(1):21–32. CrossRefPubMedGoogle Scholar
  11. Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, Nakajima S, Plitman E, Chung JK, Iwata Y, Wilson A, Remington G, Graff-Guerrero A (2015) Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy nonobese humans. Int J Neuropsychopharmacol 18:1–10CrossRefGoogle Scholar
  12. Chen d C, Wang J, Wang B, Yang SC, Zhang CX, Zheng YL, Li YL, Wang N, Yang KB, Xiu MH, Kosten T, Zhang XY (2009) Decreased levels of serum brain-derived neurotrophic factor in drug-naive first-episode schizophrenia: relationship to clinical phenotypes. Psychopharmacology 207(3):375–380. CrossRefPubMedGoogle Scholar
  13. Chen S, Broqueres-You D, Yang G, Wang Z, Li Y, Wang N, Zhang X, Yang F, Tan Y (2013) Relationship between insulin resistance, dyslipidaemia and positive symptom in Chinese antipsychotic-naive first-episode patients with schizophrenia. Psychiatry Res 210(3):825–829. CrossRefPubMedGoogle Scholar
  14. Correll CU, Robinson DG, Schooler NR, Brunette MF, Mueser KT, Rosenheck RA, Marcy P, Addington J, Estroff SE, Robinson J, Penn DL, Azrin S, Goldstein A, Severe J, Heinssen R, Kane JM (2014) Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders, baseline results from the RAISE-ETP study. JAMA Psychiatry 71(12):1350–1363. CrossRefPubMedGoogle Scholar
  15. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148(11):1474–1486. CrossRefPubMedGoogle Scholar
  16. Dixon L, Weiden P, Delahanty J, Goldberg R, Postrado L, Lucksted A, Lehman A (2000) Prevalence and correlates of diabetes in national schizophrenia samples. Schizophr Bull 26(4):903–912. CrossRefPubMedGoogle Scholar
  17. Dore S, Kar S, Quirion R (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci 94(9):4772–4777. CrossRefPubMedPubMedCentralGoogle Scholar
  18. European Network of National Networks Studying Gene-Environment Interactions in Schizophrenia (EU-GEI) (2014) Identifying gene–environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull 40(4):729–736. CrossRefGoogle Scholar
  19. Falcone MA, Murray RM, Wiffen BDR, O’Connor JA, Russo M, Kolliakou A, Stilo S, Taylor H, Gardner-Sood P, Paparelli A, Jichi F, Di Forti M, David AS, Freeman D, Jolley S (2014) Jumping to conclusions, neuropsychological functioning, and delusional beliefs in first episode psychosis. Schizophr Bull 41:411–418CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fernandez-Egea E, Bernardo M, Parellada E, Justicia A, Garcia-Rizo C, Esmatjes E, Conget I, Kirkpatrick B (2008a) Glucose abnormalities in the siblings of people with schizophrenia. Schizophr. Res 103:110–113CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fernandez-Egea E, Miller B, Bernardo M, Donnerc T, Kirkpatrick B (2008b) Parental history of type 2 diabetes in patients with nonaffective psychosis. Shizophr Res 98(1-3):302–306. CrossRefGoogle Scholar
  22. Garety PA, Freeman D (2013) The past and future of delusions research: from the inexplicable to the treatable. Br J Psychiatry 203(5):327–333. CrossRefPubMedGoogle Scholar
  23. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645. CrossRefPubMedGoogle Scholar
  24. Gough SCL, O’Donovan MC (2005) Clustering of metabolic comorbidity in schizophrenia: a genetic contribution? Journal of Psychopharmacology 19(6) Supplement: 47–55Google Scholar
  25. Greenhalgh AM, Gonzalez-Blanco L, Garcia-Rizo C, Fernandez-Egea E, Miller B, Arroyo B, Kirkpatrick B (2016) Meta-analysis of glucose tolerance, insulin, and insulin resistance in antipsychotic-naive patients with nonaffective psychosis. Schizophr Res 179:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110: 227–239, 2, DOI:
  27. Lamos EM, Levitt DL, Munir KM (2016) A review of dopamine agonist therapy in type 2 diabetes and effects on cardio-metabolic parameters. Prim Care Diabetes 10(1):60–65. CrossRefPubMedGoogle Scholar
  28. Lin PI, Shuldiner AR (2010) Rethinking the genetic basis for comorbidity of schizophrenia and type 2 diabetes. Schizophr Res 123(2-3):234–243. CrossRefPubMedGoogle Scholar
  29. Malan-Müller S, Kilian S, van den Heuvel LL, Bardien S, Asmal L, Warnich L, Emsley RA, Hemmings SMJ, Seedat S (2016) A systematic review of genetic variants associated with metabolic syndrome in patients with schizophrenia. Schizophr Res 170(1):1–17. CrossRefPubMedGoogle Scholar
  30. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. CrossRefPubMedGoogle Scholar
  31. McEvoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L, Meltzer HY, Hsiao J, Scott Stroup T, Lieberman JA (2005) Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res 80(1):19–32. CrossRefPubMedGoogle Scholar
  32. Mohr C, Ettinger U (2014) An overview of the association between schizotypy and dopamine. Front Psychiatry 5:184. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mukherjee S, Schnur DB, Reddy R (1989) Family history of type 2 diabetes in schizophrenic patients. Lancet 1(8636):495 (letter)CrossRefPubMedGoogle Scholar
  34. Narita M, Aoki K, Takagi M, Yajima Y, Suzuki T (2003) Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine. Neuroscience 119(3):767–775. CrossRefPubMedGoogle Scholar
  35. Padmanabhan JL, Nanda P, Tandon N, Mothi SS, Bolo N, McCarroll S, Clementz BA, Gershon ES, Pearlson GD, Sweeney JA, Tamminga CA, Keshavan MS (2016) Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. J Psychiatr Res 77:52–58. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Perry BI, McIntosh G, Weich S, Singh S, Rees K (2016) The association between first-episode psychosis and abnormal glycaemic control: systematic review and meta-analysis. Lancet Psychiatry 3(11):1049–1058. CrossRefPubMedGoogle Scholar
  37. Phillips LD, Edwards W (1966) Conservatism in a simple probability inference task. J Exp Psychol 72(3):346–354. CrossRefPubMedGoogle Scholar
  38. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD (2017a) Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 74(3):261–269. CrossRefPubMedGoogle Scholar
  39. Pillinger T, Beck K, Stubbs B, Howes OD (2017b) Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis. Br J Psychiatry doi 211(6):339–349. [Epub ahead of print]CrossRefGoogle Scholar
  40. Polimanti R, Gelernter J, Stein DJ (2017) Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophr Res doi. [Epub ahead of print]
  41. Rabella M, Grasa E, Corripio I, Romero S, Mañanas MÀ, Antonijoan RM, Münte TF, Pérez V, Riba J (2016) Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism. Neuroimage Clin 11:770–779. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Robins LN, Wing J, Wittchen HU, Helzer JE, Babor TF, Burke J, Farmer A, Jablenski A, Pickens R, Regier DA, Sartorius N, Towle LH (1988) The composite international diagnostic interview. An epidemiologic instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Arch Gen Psychiatry 45(12):1069–1077. CrossRefPubMedGoogle Scholar
  43. Ryan MC, Collins P, Thakore JH (2003) Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160(2):284–269. CrossRefPubMedGoogle Scholar
  44. Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, Butler PC (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39(5):543–555. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998 59(suppl 20):22–33Google Scholar
  46. So SH, Freeman D, Dunn G, Kapur S, Kuipers E, Bebbington P, Fowler D, Garety PA (2012) Jumping to conclusions, a lack of belief flexibility and delusional conviction in psychosis. J Abnorm Psychol 121(1):129–139. CrossRefPubMedGoogle Scholar
  47. Spelman LM, Walsh PI, Sharifi N, Collins P, Thakore JH (2007) Impaired glucose tolerance in first-episode drug-naïve patients with schizophrenia. Diabet Med 24(5):481–485. CrossRefPubMedGoogle Scholar
  48. Van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645. CrossRefPubMedGoogle Scholar
  49. Van Os J, Linscott RJ, Myin-Germeys I, Delespaul P, Krabbendam L (2009) A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol Med 39(2):179–195. CrossRefPubMedGoogle Scholar
  50. Vancampfort D, Wampers M, Mitchell AJ, Correll CU, De Herdt A, Probst M, De Hert M (2013) A meta-analysis of cardio-metabolic abnormalities in drug naïve, first-episode and multi-episode patients with schizophrenia versus general population controls. World Psychiatry 12(3):240–250. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, Shetty KT (2007) Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry 164(10):1557–1560. CrossRefPubMedGoogle Scholar
  52. Vollema MG, Ormel J (2000) The reliability of the structured interview for schizotypy-revised. Schizophr Bull 3:619–629CrossRefGoogle Scholar
  53. Walter EE, Fernandez F, Snelling M, Barkus E (2016) Genetic consideration of schizotypal traits: a review. Front Psychol 7:1769. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wechsler, D. (1997) WAIS-III: Wechsler Adult Intelligence Scale (3rd ed.) Administration and Scoring Manual. Psychological Corporation, San Antonio, TXGoogle Scholar
  55. van Welie H, Derks EM, Verweij KH, de Valk HW, Kahn RS, Cahn W (2013) The prevalence of diabetes mellitus is increased in relatives of patients with a non-affective psychotic disorder. Schizophrenia Res 143(2-3):354–357. CrossRefGoogle Scholar
  56. Wellcome Trust Case Control Consortium (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720. CrossRefGoogle Scholar
  57. Wu RR, Zhao JP, Liu ZN, Zhai JG, Guo XF, Guo WB, Tang JS (2006) Effects of typical and atypical antipsychotics on glucose–insulin homeostasis and lipid metabolism in first-episode schizophrenia. Psychopharmacology 186:572–578CrossRefPubMedGoogle Scholar
  58. Zammitt NN, Frier BM (2005) Hypoglycemia in type 2 diabetes. Pathophysiology, frequency, and effects of different treatment modalities. Diabetes Care 28(12):2948–2961. CrossRefPubMedGoogle Scholar
  59. Zhang XY, Chena DC, Tana YL, Ana HM, Zunta-Soaresb GB, Huangc XF, Soaresb JC (2015) Glucose disturbances in first-episode drug-naïve schizophrenia: relationship to psychopathology. Psychoneuroendocrinology 62:376–380. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of PsychiatryAnkara UniversityAnkaraTurkey
  2. 2.Brain Research CenterAnkara UniversityAnkaraTurkey
  3. 3.Maastricht University Medical CentreMaastrichtNetherlands
  4. 4.Istanbul Faculty of Medicine, Department of PsychiatryIstanbul UniversityIstanbulTurkey
  5. 5.Faculty of Medicine, Department of PsychiatryDokuz Eylul UniversityİzmirTurkey
  6. 6.Faculty of Medicine, Department of Endocrinology and Metabolic DiseasesAnkara UniversityAnkaraTurkey
  7. 7.Brain Centre Rudolf MagnusUtrecht University Medical CentreUtrechtNetherlands
  8. 8.King’s College London, Department of Psychosis StudiesInstitute of PsychiatryLondonUK

Personalised recommendations