, Volume 235, Issue 4, pp 1015–1027 | Cite as

Differential activation of arginine-vasopressin receptor subtypes in the amygdaloid modulation of anxiety in the rat by arginine-vasopressin

  • Oscar René Hernández-Pérez
  • Minerva Crespo-Ramírez
  • Yordanka Cuza-Ferrer
  • José Anias-Calderón
  • Limei Zhang
  • Gabriel Roldan-Roldan
  • Raúl Aguilar-Roblero
  • Dasiel O. Borroto-Escuela
  • Kjell Fuxe
  • Miguel Perez de la Mora
Original Investigation



The amygdala plays a paramount role in the modulation of anxiety and numerous studies have shown that arginine vasopressin (AVP) elicits anxiogenic effects following either its systemic or septal administration.


The aim of this paper was to study the involvement of vasopressinergic neurotransmission in the amygdaloid modulation of unconditioned anxiety and to ascertain whether or not AVP receptor subtypes may have a differential role in this modulation.


Anxiety behavior was evaluated both in Shock-Probe Burying Test and Light-Dark Box following the bilateral microinfusion of AVP alone or AVP together with either AVP 1a or AVP 1b receptor antagonists into the central amygdala (CeA).


AVP microinfusion elicited at low (1 ng/side) but not at high doses (10 ng/side) anxiogenic-like responses in the Shock-Probe Burying Test but not in the Light-Dark Box. SSR149415, an AVP 1b antagonist unlike Manning compound, an AVP 1a antagonist, fully prevented AVP effects in the Shock-Probe Burying Test when it was administered simultaneously with AVP. In addition, oxytocin receptor blockade also failed to affect AVP effects. No effects of any AVP antagonist by itself were observed in both anxiety paradigms.


Our results indicate that AVP 1b receptor contribute to the amygdaloid modulation of anxiety at least in the context of the Shock-Probe Burying Test since no effects were noticed in the Light-Dark Box. It remains to the future to ascertain whether AVP receptor subtypes have indeed differential actions either in the modulation of global or specific features of unconditioned anxiety.


Amygdala Vasopressin AVP SSR149415 Manning compound OTA Anxiety Shock-Probe Burying Test Light-Dark Box 


Funding information

This work was supported by Vetenskapsrådet in year 2015–2017 (No. 348-2014-4396) as an international collaborative research grant from the Swedish Research Council (2015-2017) with Mexico (MPM) and by grants UNAM-DGAPA-PAPIIT IN204314 and IN205217 to MPM, CB-2013/22173 from Consejo Nacional de Ciencia y Tecnología (CONACYT) to MPM, the Swedish Research Council (04X-715) to KF, and by AFA Försäkring (130328) to KF. Oscar René Hernández-Pérez is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received scholarship 289977 from CONACYT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2017_4817_Fig4_ESM.gif (327 kb)
Supplementary Fig. 1

Representative coronal section (a) and schematic representation (b) of the sites of cannulae implantation within the left and right amygdala from rats microinjected with saline, arginine-vasopressin (AVP), and AVP1b receptor antagonist and evaluated behaviorally in the Shock-Probe Burying Test and Light-Dark Box. Stereotaxical levels correspond to those of the rat brain atlas of Paxinos and Watson (1986). Because of the high density of cannulae tips in some of the sections, some overlap of the injection sites has been produced. ACo, anterior amygdaloid cortical nucleus; BLA, basolateral amygdaloid nucleus; BMA, amygdaloid basomedial nucleus; CeL, central amygdaloid nucleus, lateral division; CeM, central amygdaloid nucleus, medial division; IM, main intercalated paracapsular island; LA, lateral amygdala; MeA, medial amygdaloid nucleus. (GIF 326 kb)

213_2017_4817_MOESM1_ESM.tif (5.3 mb)
High resolution (TIFF 5477 kb)
213_2017_4817_MOESM2_ESM.jpg (183 kb)
Supplementary Fig. 2 Extent of diffusion of [FITC] [Ahx]CYIQNCPLG[amide] microinfused into the amygdala. [FITC] [Ahx]CYIQNCPLG[amide], a fluorescent oxytocin analog, having a similar molecular weight and amino acid composition as AVP was microinfused into the amygdala under the conditions described in the “Experimental procedures” and its extent of diffusion was evaluated after 10 min following its injection. a A cannula tip is shown within CeA in a coronal section counterstained with Cresyl Violet at a level − 2.56 mm according to the atlas of Paxinos & Watson (1986). b Fluorescence microscopy analysis (×4) indicated that [FITC] [Ahx]CYIQNCPLG[amide] remains in the CeA near the cannulae tip, radially diffusing to occupy the volume of a sphere of 0.38 mm3 from the site of its injection. The fluorescent oxytocin analog is taken up into surrounding nerve cell bodies on the medial, ventral, and lateral side. c Amplification (×10) from the same field. BLA, basolateral amygdaloid nucleus; CeA, central amygdaloid nucleus; MeA, medial amygdaloid nucleus; OXT-FITC, [FITC] [Ahx]CYIQNCPLG[amide]. (JPEG 182 kb)


  1. Ahn DK, Kim KH, Ju JS, Kwon S, Park JS (2001) Microinjection of arginine vasopressin into the central nucleus of amygdala suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res Bull 55(1):117–121. CrossRefPubMedGoogle Scholar
  2. Appenrodt E, Schwarzberg H (2000) Central vasopressin administration failed to influence anxiety behavior after pinealectomy in rats. Physiol Behav 103:393–403 68: 735-9Google Scholar
  3. Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM (2001) CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci 21(7):2546–2552PubMedGoogle Scholar
  4. Barberis C, Morin D, Durroux T, Mouillac B, Guillon G, Hibert M, Tribollet E, Manning M (1999) Molecular pharmacology of vasopressin and oxytocin receptors and therapeutic potential. Manning Drug News Perspect 12(5):279–292. CrossRefGoogle Scholar
  5. Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29(3):483–493. CrossRefPubMedGoogle Scholar
  6. Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, Duchou J, Van Craenenbroeck K, Suárez-Boomgaard D, Rivera A, Guidolin D, Agnati LF, Fuxe K (2014) The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 15(5):8570–8590. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borroto-Escuela DO, Tarakanov AO, Fuxe K (2016) FGFR1-5-HT1A heteroreceptor complexes: implications for understanding and treating major depression. Trends Neurosci 39(1):5–15. CrossRefPubMedGoogle Scholar
  8. Bosch OJ, Sartori SB, Singewald N, Neumann ID (2007) Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress 10(3):261–270. CrossRefPubMedGoogle Scholar
  9. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435CrossRefPubMedGoogle Scholar
  10. Buijs RM (1980) Immunocytochemical demonstration of vasopressin and oxytocin in the rat brain by light and electron microscopy. J Histochem Cytochem 28(4):357–360. CrossRefPubMedGoogle Scholar
  11. Buijs RM, Hermes MLHJ, Kalsbeek A, Vanderwoude T, Vanheerikhuize JJ (1991) Vasopressin distribution, origin and functions in the central-nervous-system. Colloq Inserm 208:149–158Google Scholar
  12. Caffe AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261(2):237–252. CrossRefPubMedGoogle Scholar
  13. Corbani M, Marir R, Trueba M, Chafai M, Vincent A, Borie AM, Desarmenien MG, Ueta Y, Tomboly C, Olma A, Manning M, Guillon G (2017) Neuroanatomical distribution and function of the vasopressin V1B receptor in the rat brain deciphered using specific fluorescent ligands. Gen Comp Endocrinol.
  14. Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32(3):777–785. CrossRefPubMedGoogle Scholar
  15. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34. CrossRefPubMedGoogle Scholar
  16. De Boer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463(1-3):145–161. CrossRefPubMedGoogle Scholar
  17. de la Mora MP, Cardenas-Cachon L, Vazquez-Garcia M, Crespo-Ramirez M, Jacobsen K, Hoistad M, Agnati L, Fuxe K (2005) Anxiolytic effects of intra-amygdaloid injection of the D1 antagonist SCH23390 in the rat. Neurosci Lett 377(2):101–105. CrossRefPubMedGoogle Scholar
  18. de la Mora MP, Gallegos-Cari A, Arizmendi-García Y, Marcellino D, Fuxe K (2010) Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis. Prog Neurobiol 90(2):198–216. CrossRefPubMedGoogle Scholar
  19. de la Mora MP, Pérez-Carrera D, Crespo-Ramírez M, Tarakanov A, Fuxe K, Borroto-Escuela DO (2016) Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim Biophys Acta 1862(11):2075–2085. CrossRefPubMedGoogle Scholar
  20. de la Perez M, Lara-García D, Jacobsen KX, Vázquez-García M, Crespo-Ramírez M, Flores-Gracia C, Escamilla-Marvan E, Fuxe K (2006) Anxiolytic-like effects of the selective metabotropic glutamate receptor 5 antagonist MPEP after its intra-amygdaloid microinjection in three different non-conditioned rat models of anxiety. Eur J Neurosci 23:2749–2759CrossRefGoogle Scholar
  21. De Vries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:236–254CrossRefGoogle Scholar
  22. Di Benedictis BT, Nussbaum ER, Cheung HK, Veenema AH (2017) Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. J Comp Neurol 525(11):2549–2570. CrossRefGoogle Scholar
  23. Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23. CrossRefPubMedGoogle Scholar
  24. Dumais KM, Bredewold R, Mayer TE, Veenema AH (2013) Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex-specific ways. Horm Behav 64(4):693–701. CrossRefPubMedGoogle Scholar
  25. Ebner K, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (1999) Vasopressin released within the septal brain area during swim stress modulates the behavioural stress response in rats. Eur J Neurosci 11(3):997–1002. CrossRefPubMedGoogle Scholar
  26. Ebner K, Wotjak CT, Landgraf R, Engelmann M (2002) Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur J Neurosci 15(2):384–388. CrossRefPubMedGoogle Scholar
  27. Egashira N, Tanoue A, Higashihara F, Fuchigami H, Sano K, Mishima K, Fukue Y, Nagai H, Takano Y, Tsujimoto G, Stemmelin J, Griebel G, Iwasaki K, Ikeda T, Nishimura R, Fujiwara M (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology 30(11):1996–2005. CrossRefPubMedGoogle Scholar
  28. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62(6):757–771. CrossRefPubMedGoogle Scholar
  29. Engin E, Treit D (2008) Dissociation of the anxiolytic-like effects of Avpr1a and Avpr1b receptor antagonists in the dorsal and ventral hippocampus. Neuropeptides 42(4):411–421. CrossRefPubMedGoogle Scholar
  30. Fernandez-Guasti A, Ferreira A, Picazo O (2001) Diazepam, but not buspirone, induces similar anxiolytic-like actions in lactating and ovariectomized Wistar rats. Pharmacol Biochem Behav 70(1):85–93. CrossRefPubMedGoogle Scholar
  31. Fuxe K, Borroto-Escuela DO, Tarakanov A, Fernandez WR, Manger P, Rivera A, Van Craenenbroeck K, Skieterska K, Diaz-Cabiale Z, Filip M, Ferraro L, Tanganelli S, Guidolin D, Cullheim S, de la Mora MP, Agnati LF (2013) Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurol Psychiatry Brain Res 19(4):141–158. CrossRefGoogle Scholar
  32. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 39(1):131–155. CrossRefPubMedGoogle Scholar
  33. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A 99(9):6370–6375. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Henniger MS, Ohl F, Holter SM, Weissenbacher P, Toschi N, Lorscher P, Wigger A, Spanagel R, Landgraf R (2000) Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behav Brain Res 111(1-2):153–163. CrossRefPubMedGoogle Scholar
  35. Hernández VS, Hernández OR, Perez de la Mora M, Gómora MJ, Fuxe K, Eiden LE, Zhang L (2016) Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping. Front Neural Circuits 10(92):1–19. Google Scholar
  36. Hernando F, Schoots O, Lolait SJ, Burbach JPH (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142(4):1659–1668. CrossRefPubMedGoogle Scholar
  37. Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB (2007) Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav 86(3):431–440. CrossRefPubMedGoogle Scholar
  38. Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308(5719):245–248. CrossRefPubMedGoogle Scholar
  39. Hughes RN, Hancock NJ (2016) Strain-dependent effects of acute caffeine on anxiety-related behavior in PVG/c, Long-Evans and Wistar rats. Pharmacol Biochem Behav 140:51–61. CrossRefPubMedGoogle Scholar
  40. James TA, Starr MS (1978) Effects and the rate and volume of injection of the pharmacological response elicited by intranigral microinjection of drugs. J Pharmacol Methods 1(3):197–202. CrossRefGoogle Scholar
  41. Keck ME, Wigger A, Welt T, Muller MB, Gesing A, Reul JM, Holsboer F, Landgraf R, Neumann ID (2002) Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26(1):94–105. CrossRefPubMedGoogle Scholar
  42. Landgraf R, Kubota M, Holsboer F, Wotjak CT (1995a) Release of vasopressin and oxytocin within the brain and into blood: microdialysis and antisense targeting. Int Congr Ser 1098:243–256Google Scholar
  43. Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F, Engelmann M (1995b) V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 15(6):4250–4258PubMedGoogle Scholar
  44. Laszlo K, Kovács A, Zagoracz O, Ollmann T, Péczely L, Kertes E, Lacy DG, Lénárd L (2016) Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav Brain Res 296:279–285. CrossRefPubMedGoogle Scholar
  45. Le Doux J (2007) The amygdala. Curr Biol 17:R868–R874CrossRefGoogle Scholar
  46. Liebsch G, Wotjak CT, Landgraf R, Engelmann M (1996) Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci Lett 217(2-3):101–104. CrossRefPubMedGoogle Scholar
  47. Litvin Y, Murakami G, Pfaff DW (2011) Effects of chronic social defeat on behavioral and neural correlates of sociality: vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiol Behav 103(3-4):393–403. CrossRefPubMedGoogle Scholar
  48. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young WS 3rd, Mezey E, Brownstein MJ (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A 92(15):6783–6787. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lu YF, Moriwaki A, Tomizawa K, Onuma H, Cai XH, Matsui H (1997) Effects of vasopressin and involvement of receptor subtypes in the rat central amygdaloid nucleus in vitro. Brain Res 768(1-2):266–272. CrossRefPubMedGoogle Scholar
  50. Manning M, Stoev S, Bankowski K, Misicka A, Lammek B, Wo NC, Sawyer WH (1992) Synthesis and some pharmacological properties of potent and selective antagonists of the vasopressor (V1-receptor) response to arginine-vasopressin. J Med Chem 35(2):382–388Google Scholar
  51. Manning M, Stoev S, Chini B, Durroux T, Mouillac B, Guillon G (2008) Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res 170:473–512. CrossRefPubMedGoogle Scholar
  52. Misslin R, Belzung C, Vogel E (1989) Behavioural validation of a light/dark choice procedure for testing anti-anxiety agents. Behav Process 18(1-3):119–132. CrossRefGoogle Scholar
  53. Mouillac B, Chini B, Balestre MN, Jard S, Barberis C, Manning M, Tribollet E, Trumpp-Kallmeyer S, Hoflack J, Elands J (1995) Identification of agonist binding sites of vasopressin and oxytocin receptors. Adv Exp Med Biol 395:301–310PubMedGoogle Scholar
  54. Onaivi ES, Martin BR (1989) Neuropharmacological and physiological validation of a computer-controlled two-compartment black and white box for the assessment of anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry 13(6):963–976. CrossRefGoogle Scholar
  55. Ostrowski NL, Lolait SJ, Young WS (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135(4):1511–1528. CrossRefPubMedGoogle Scholar
  56. Overstreet DH, Griebel G (2005) Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav 82(1):223–227. CrossRefPubMedGoogle Scholar
  57. Pare D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92(1):1–9. CrossRefPubMedGoogle Scholar
  58. Paxinos G, Watson C (1986) The rat brain in stereotaxical coordinates, 4th edn. Academic Press, San DiegoGoogle Scholar
  59. Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671(2):213–221. CrossRefPubMedGoogle Scholar
  60. Peterson SL (1988) Drug microinjection in discrete brain regions. KOPF Carrier 50:1–6Google Scholar
  61. Raggenbass M (2008) Overview of cellular electrophysiological actions of vasopressin. Eur J Pharmacol 583(2–3):243–254. CrossRefPubMedGoogle Scholar
  62. Roozendaal B, Wiersma A, Driscoll P, Koolhaas JM, Bohus B (1992) Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat. Brain Res 596(1-2):35–40. CrossRefPubMedGoogle Scholar
  63. Salomé N, Stemmelin J, Cohen C, Griebel G (2006) Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 187(2):237–244. CrossRefPubMedGoogle Scholar
  64. Scott LV, Dinan TG (1998) Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci 62(22):1985–1998. CrossRefPubMedGoogle Scholar
  65. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrie P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G (2002) Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther 300(3):1122–1130CrossRefPubMedGoogle Scholar
  66. Shimazaki T, Iijima M, Chaki S (2006) The pituitary mediates the anxiolytic-like effects of the vasopressin V1B receptor antagonist, SSR149415, in a social interaction test in rats. Eur J Pharmacol 543(1-3):63–67. CrossRefPubMedGoogle Scholar
  67. Song Z, McCann KE, McNeill JK, Larkin TE 2nd, Huhman KL, Albers HE (2014) Oxcytocin induces social communication by activating arginine-vassopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology.
  68. Song Z, Larkin TE, Malley MO, Albers HE (2016) Oxytocin (OT) and arinine vasopressin (AVP) act on OT receptors an not AVP V1a receptors to enhance social recognition in adult Syrian hamsters (Mesocricetus aureatus). Horm Behav.
  69. Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295(3):1267–1275PubMedGoogle Scholar
  70. Stemmelin J, Lukovic L, Salomé N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30(1):35–42. CrossRefPubMedGoogle Scholar
  71. Szot P, Bale TL, Dorsa DM (1994) Distribution of messenger RNA for the vasopressin V1a receptor in the CNS of male and female rats. Brain Res Mol Brain Res 24(1-4):1–10. CrossRefPubMedGoogle Scholar
  72. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17(4):677–691. CrossRefPubMedGoogle Scholar
  73. Terrillon S, Barberis C, Bouvier M (2004) Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc Natl Acad Sci U S A 101(6):1548–1553. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology 138(10):4109–4122. CrossRefPubMedGoogle Scholar
  75. Treit D, Pinel JP, Fibiger HC (1981) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15(4):619–626. CrossRefPubMedGoogle Scholar
  76. Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984. CrossRefPubMedGoogle Scholar
  77. Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, Landgrafl R (2004) Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology 29(1):1–14. CrossRefPubMedGoogle Scholar
  78. Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R (1996) Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16(23):7725–7732PubMedGoogle Scholar
  79. Wotjak CT, Ludwig M, Ebner K, Russell JA, Singewald N, Landgraf R, Engelmann M (2002) Vasopressin from hypothalamic magnocellular neurons has opposite actions at the adenohypophysis and in the supraoptic nucleus on ACTH secretion. Eur J Neurosci 16(3):477–485. CrossRefPubMedGoogle Scholar
  80. Young SW, Li J, Wersninger SR, Palkovits M (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where its unaffected by restraint stress or adrenalectomy. Neuroscience 143(4):1031–1039. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zelena D (2012) Vasopressin in health and disease with a focus on affective disorders. Cent Nerv Syst Agents Med Chem 12(4):286–303. CrossRefPubMedGoogle Scholar
  82. Zhang L, Medina MP, Hernandez VS, Estrada FS, Vega-Gonzalez A (2010) Vasopressinergic network abnormalities potentiate conditioned anxious state of rats subjected to maternal hyperthyroidism. Neuroscience 168(2):416–428. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oscar René Hernández-Pérez
    • 1
  • Minerva Crespo-Ramírez
    • 1
  • Yordanka Cuza-Ferrer
    • 2
  • José Anias-Calderón
    • 2
  • Limei Zhang
    • 3
  • Gabriel Roldan-Roldan
    • 3
  • Raúl Aguilar-Roblero
    • 1
  • Dasiel O. Borroto-Escuela
    • 4
  • Kjell Fuxe
    • 4
  • Miguel Perez de la Mora
    • 1
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de Ciencias Básicas y Preclínicas Victoria de GirónLa HabanaCuba
  3. 3.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Department of NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations