Psychopharmacology

, Volume 235, Issue 4, pp 983–998 | Cite as

Brief ethanol exposure and stress-related factors disorganize neonatal breathing plasticity during the brain growth spurt period in the rat

  • A. F. Macchione
  • F. Anunziata
  • B. O. Haymal
  • P. Abate
  • J. C. Molina
Original Investigation
  • 49 Downloads

Abstract

Rationale

The effects of early ethanol exposure upon neonatal respiratory plasticity have received progressive attention given a multifactorial perspective related with sudden infant death syndrome or hypoxia-associated syndromes. The present preclinical study was performed in 3–9-day-old pups, a stage in development characterized by a brain growth spurt that partially overlaps with the 3rd human gestational trimester.

Methods

Breathing frequencies and apneas were examined in pups receiving vehicle or a relatively moderate ethanol dose (2.0 g/kg) utilizing a whole body plethysmograph. The experimental design also considered possible associations between drug administration stress and exteroceptive cues (plethysmographic context or an artificial odor). Ethanol exposure progressively exerted a detrimental effect upon breathing frequencies. A test conducted at PD9 when pups were under the state of sobriety confirmed ethanol’s detrimental effects upon respiratory plasticity (breathing depression).

Results

Pre-exposure to the drug also resulted in a highly disorganized respiratory response following a hypoxic event, i.e., heightened apneic episodes. Associative processes involving drug administration procedures and placement in the plethysmographic context also affected respiratory plasticity. Pups that experienced intragastric administrations in close temporal contiguity with such a context showed diminished hyperventilation during hypoxia. In a 2nd test conducted at PD9 while pups were intoxicated and undergoing hypoxia, an attenuated hyperventilatory response was observed. In this test, there were also indications that prior ethanol exposure depressed breathing frequencies during hypoxia and a recovery normoxia phase.

Conclusion

As a whole, the results demonstrated that brief ethanol experience and stress-related factors significantly disorganize respiratory patterns as well as arousal responses linked to hypoxia in neonatal rats.

Keywords

Neonate Stress Learning Ethanol Hypoxia Breathing 

References

  1. Abate P, Spear And NE, Molina JC (2001) Fetal and infantile alcohol-mediated associative learning in the rat. Alcohol Clin Exp Res 25(7):989–998.  https://doi.org/10.1111/j.1530-0277.2001.tb02307.x CrossRefPubMedGoogle Scholar
  2. Abate P, Pepino MY, Spear NE, Molina JC (2004) Fetal learning with ethanol: correlations between maternal hypothermia during pregnancy and neonatal responsiveness to chemosensory cues of the drug. Alcohol Clin Exp Res 28(5):805–815.  https://doi.org/10.1097/01.ALC.0000125354.15808.24 CrossRefPubMedGoogle Scholar
  3. Abate P, Pueta M, Spear N, Molina J (2008) Fetal learning about ethanol and later ethanol responsiveness: evidence against “safe” amounts of prenatal exposure. Exp Biol Med 233(2):139–154.  https://doi.org/10.3181/0703-MR-69 CrossRefGoogle Scholar
  4. Abel EL (1981) A critical evaluation of the obstetric use of alcohol in preterm labor. Drug Alcohol Depend 7(4):367–378.  https://doi.org/10.1016/0376-8716(81)90051-X CrossRefPubMedGoogle Scholar
  5. Acevedo MB, D’Aloisio G, Haymal OB, Molina JC (2017a) Brain acetaldehyde exposure impacts upon neonatal respiratory plasticity and ethanol-related learning in rodents. Front Behav Neurosci 11:39.  https://doi.org/10.3389/fnbeh.2017.00039 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Acevedo MB, Macchione AF, Anunziata F, Haymal OB, Molina JC (2017b) Neonatal experiences with ethanol intoxication modify respiratory and thermoregulatory plasticity and affect subsequent ethanol intake in rats. Dev Psychobiol 59(1):48–59.  https://doi.org/10.1002/dev.21466 CrossRefPubMedGoogle Scholar
  7. Arias C, Solari AC, Mlewski EC, Miller S, Haymal B, Spear NE, Molina JC (2010) Social isolation and stress related hormones modulate the stimulating effect of ethanol in preweanling rats. Behav Brain Res 211(1):64–70.  https://doi.org/10.1016/j.bbr.2010.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bailey BA, Sokol RJ (2011) Preterm delivery, and sudden infant death syndrome. Alcohol Res Heal 34:86–91Google Scholar
  9. Bake S, Tingling J, Miranda R (2012) Ethanol exposure during pregnancy persistently attenuates cranially-directed blood flow in the developing fetus: evidence from ultrasound imaging in a murine second trimester equivalent model. Alcohol Clin Exp Res 36(5):748–758.  https://doi.org/10.1111/j.1530-0277.2011.01676.x.Ethanol CrossRefPubMedGoogle Scholar
  10. Barron S, Riley EP, Smotherman WP (1986) The effect of prenatal alcohol exposure on umbilical cord length in fetal rats. Alcohol Clin Exp Res 10(5):493–495.  https://doi.org/10.1111/j.1530-0277.1986.tb05129.x CrossRefPubMedGoogle Scholar
  11. Bocking A (2003) Assessment of fetal heart rate and fetal movements in detecting oxygen deprivation in-utero. Eur J Obstet Gynecol Reprod Biol 110:S108–S112.  https://doi.org/10.1016/S0301-2115(03)00180-5 CrossRefPubMedGoogle Scholar
  12. Brasser SM, Spear NE (2004) Contextual conditioning in infants, but not older animals, is facilitated by CS conditioning. Neurobiol Learn Mem 81(1):46–59.  https://doi.org/10.1016/S1074-7427(03)00068-6 CrossRefPubMedGoogle Scholar
  13. Brien JF, Smith GN (1991) Effects of alcohol (ethanol) on the fetus. J Dev Physiol 15(1):21–32PubMedGoogle Scholar
  14. Burd L, Klug M, Martsolf J (2004) Increased sibling mortality in children with fetal alcohol syndrome. Addict Biol 9(2):179–186–8.  https://doi.org/10.1080/13556210410001717088 CrossRefPubMedGoogle Scholar
  15. Carlin RF, Moon RY (2017) Risk factors, protective factors, and current recommendations to reduce sudden infant death syndrome: a review. JAMA Pediatr 171(2):175–180.  https://doi.org/10.1001/jamapediatrics.2016.3345 CrossRefPubMedGoogle Scholar
  16. Çevik MÖ (2014) Habituation, sensitization, and Pavlovian conditioning. Front Integr Neurosci 8:1–6.  https://doi.org/10.3389/fnint.2014.00013 CrossRefGoogle Scholar
  17. Cullere M, Macchione AF, Haymal B, Paradelo M, Langer MD, Spear NE, Molina JC (2015) Neonatal sensitization to EtOH-induced breathing disruptions as a function of late prenatal exposure to the drug in the rat: modulatory effects of EtOH’s chemosensory cues. Physiol Behav 139:412–422.  https://doi.org/10.1016/j.physbeh.2014.10.017 CrossRefPubMedGoogle Scholar
  18. Dick TE, Coles SK (2000) Ventrolateral pons mediates short-term depression of respiratory frequency after brief hypoxia. Respir Physiol 121(2-3):87–100.  https://doi.org/10.1016/S0034-5687(00)00121-3 CrossRefPubMedGoogle Scholar
  19. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48(10):757–767.  https://doi.org/10.1136/adc.48.10.757 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83.  https://doi.org/10.1016/0378-3782(79)90022-7 CrossRefPubMedGoogle Scholar
  21. Dubois CJ, Naassila M, Daoust M, Pierrefiche O (2006) Early chronic ethanol exposure in rats disturbs respiratory network activity and increases sensitivity to ethanol. J Physiol 576(1):297–307.  https://doi.org/10.1113/jphysiol.2006.111138 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dubois CJ, Houchi H, Naassila M et al (2008) Blunted response to low oxygen of rat respiratory network after perinatal ethanol exposure: involvement of inhibitory control. J Physiol 586(5):1413–1427.  https://doi.org/10.1113/jphysiol.2007.147165 CrossRefPubMedGoogle Scholar
  23. Dubois CJ, Kervern M, Naassila M, Pierrefiche O (2013) Chronic ethanol exposure during development: disturbances of breathing and adaptation. Respir Physiol Neurobiol 189(2):250–260.  https://doi.org/10.1016/j.resp.2013.06.015 CrossRefPubMedGoogle Scholar
  24. Durand E, Dauger S, Vardon G, Gressens P, Gaultier C, de Schonen S, Gallego J (2003) Classical conditioning of breathing pattern after two acquisition trials in 2-day-old mice. J Appl Physiol 94(2):812–818.  https://doi.org/10.1152/japplphysiol.00488.2002 CrossRefPubMedGoogle Scholar
  25. Duxbury M (1990) El papel de la enfermera en neonatología. In: Neonatología. Fisiopatología y Manejo del Recién Nacido. In: Avery GB e. Editorial Panamericana, Buenos Aires, Argentina, pp 75–115Google Scholar
  26. Eade AM, Youngentob SL (2009) Adolescent ethanol experience alters immediate and long-term behavioral responses to ethanol odor in observer and demonstrator rats. Behav Brain Funct 5(1):23.  https://doi.org/10.1186/1744-9081-5-23 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eade AM, Youngentob SL (2010) The interaction of gestational and postnatal ethanol experience on the adolescent and adult odor-mediated responses to ethanol in observer and demonstrator rats. Alcohol Clin Exp Res 34(10):1705–1713.  https://doi.org/10.1111/j.1530-0277.2010.01257.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fernández-Vidal JM, Molina JC (2004) Socially mediated alcohol preferences in adolescent rats following interactions with an intoxicated peer. Pharmacol Biochem Behav 79(2):229–241.  https://doi.org/10.1016/j.pbb.2004.07.010 CrossRefPubMedGoogle Scholar
  29. Fox HE, Steinbrecher M, Pessel D et al (1978) Maternal ethanol ingestion and the occurrence of human fetal breathing movements. Am J Obstet Gynecol 132(4):354–358.  https://doi.org/10.1016/0002-9378(78)90766-4 CrossRefPubMedGoogle Scholar
  30. Galland BC, Elder DE (2014) Sudden unexpected death in infancy: biological mechanisms. Paediatr Respir Rev 15(4):287–292.  https://doi.org/10.1016/j.prrv.2014.09.003 PubMedGoogle Scholar
  31. Gallego J, Matrot B (2010) Arousal response to hypoxia in newborns: insights from animal models. Biol Psychol 84(1):39–45.  https://doi.org/10.1016/j.biopsycho.2009.12.001 CrossRefPubMedGoogle Scholar
  32. Greer JJ (2012) Control of breathing activity in the fetus and newborn. Compr Physiol 2:1873–1888.  https://doi.org/10.1002/cphy.c110006 PubMedGoogle Scholar
  33. Haas DM, Morgan AM, Deans SJ, Schubert FP (2015) Ethanol for preventing preterm birth in threatened preterm labor. Cochrane Database Syst Rev 11:CD011445.  https://doi.org/10.1002/14651858.CD011445.pub2 Google Scholar
  34. Harrell CS, Rowson SA, Neigh GN (2015) Pharmacological stimulation of hypoxia inducible factor-1α facilitates the corticosterone response to a mild acute stressor. Neurosci Lett 600:75–79.  https://doi.org/10.1016/j.neulet.2015.05.051 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Harrington C, Kirjavainen T, Teng A, Sullivan CE (2002) Altered autonomic function and reduced arousability in apparent life-threatening event infants with obstructive sleep apnea. Am J Respir Crit Care Med 165(8):1048–1054.  https://doi.org/10.1164/ajrccm.165.8.2102059 CrossRefPubMedGoogle Scholar
  36. Holson RR, Pearce B (1992) Principles and pitfalls in the analysis of prenatal treatment effects in multiparous species. Neurotoxicol Teratol 14(3):221–228.  https://doi.org/10.1016/0892-0362(92)90020-B CrossRefPubMedGoogle Scholar
  37. Horne RS, Franco P, Adamson TM et al (2004) Influences of maternal cigarette smoking on infant arousability. Early Hum Dev 79(1):49–58.  https://doi.org/10.1016/j.earlhumdev.2004.04.005 CrossRefPubMedGoogle Scholar
  38. Joseph V, Soliz J, Pequignot J, Semporé B, Cottet-Emard JM, Dalmaz Y, Favier R, Spielvogel H, Pequignot JM (2000) Gender differentiation of the chemoreflex during growth at high altitude: functional and neurochemical studies. Am J Physiol Regul Integr Comp Physiol 278(4):R806–R816CrossRefPubMedGoogle Scholar
  39. Joshi S, Kotecha S (2007) Lung growth and development. Early Hum Dev 83(12):789–794.  https://doi.org/10.1016/j.earlhumdev.2007.09.007 CrossRefPubMedGoogle Scholar
  40. Julien C, Bairam A, Joseph V (2008) Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. AJP Regul Integr Comp Physiol 294(4):R1356–R1366.  https://doi.org/10.1152/ajpregu.00884.2007 CrossRefGoogle Scholar
  41. Julien CA, Joseph V, Bairam A (2010) Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia. Pediatr Res 68(2):105–111.  https://doi.org/10.1203/PDR.0b013e3181e5bc78 CrossRefPubMedGoogle Scholar
  42. Kahn A, Blum D, Rebuffat E, Sottiaux M, Levitt J, Bochner A, Alexander M, Grosswasser J, Muller MF (1988) Polysomnographic studies of infants who subsequently died of sudden infant death syndrome. Pediatrics 82(5):721–727PubMedGoogle Scholar
  43. Kahn A, Groswasser J, Rebuffat E, Sottiaux M, Blum D, Foerster M, Franco P, Bochner A, Alexander M, Bachy A, Richard P, Verghote M, Polain DL, Wayenberg JL (1992) Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep 15(4):287–292.  https://doi.org/10.1093/sleep/15.4.287 CrossRefPubMedGoogle Scholar
  44. Kato I, Groswasser J, Franco P et al (2001) Developmental characteristics of apnea in infants who succumb to sudden infant death syndrome. Am J Respir Crit Care Med 164(8):1464–1469.  https://doi.org/10.1164/rccm2009001 CrossRefPubMedGoogle Scholar
  45. Kervern M, Dubois CJ, Naassila M et al (2009) Perinatal alcohol exposure in rat induces long-term depression of respiration after episodic hypoxia. Am J Respir Crit Care Med 179(7):608–614.  https://doi.org/10.1164/rccm.200703-434OC CrossRefPubMedGoogle Scholar
  46. Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE (2009) The brainstem and serotonin in the sudden infant death syndrome. Annu Rev Pathol 4(1):517–550.  https://doi.org/10.1146/annurev.pathol.4.110807.092322 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kryger M, McCullough RE, Collins D, Scoggin CH, Weil JV, Grover RF (1978) Treatment of excessive polycythemia of high altitude with respiratory stimulant drugs. Am Rev Respir Dis 117(3):455–464.  https://doi.org/10.1164/arrd.1978.117.3.455 PubMedGoogle Scholar
  48. Lewis PJ, Boylan P (1979) Alcohol and fetal breathing. Lancet (London, England) 1:388CrossRefGoogle Scholar
  49. Lewis B, Wellmann KA, Barron S (2007) Agmatine reduces balance deficits in a rat model of third trimester binge-like ethanol exposure. Pharmacol Biochem Behav 88(1):114–121.  https://doi.org/10.1016/j.pbb.2007.07.012 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Macchione AF, Anunziata F, Culleré ME, Haymal BO, Spear N, Abate P, Molina JC (2016) Conditioned breathing depression during neonatal life as a function of associating ethanol odor and the drug’s intoxicating effects. Dev Psychobiol 58(6):670–686.  https://doi.org/10.1002/dev.21398 CrossRefPubMedGoogle Scholar
  51. Martin RJ, Abu-Shaweesh JM (2005) Control of breathing and neonatal apnea. Biol Neonate 87(4):288–295.  https://doi.org/10.1159/000084876 CrossRefPubMedGoogle Scholar
  52. Mayock DE, Ness D, Mondares RL, Gleason CA (2007) Binge alcohol exposure in the second trimester attenuates fetal cerebral blood flow response to hypoxia. J Appl Physiol 102(3):972–977.  https://doi.org/10.1152/japplphysiol.00956.2006 CrossRefPubMedGoogle Scholar
  53. Molina JC, Chotro MG (1989) Acute alcohol intoxication paired with aversive reinforcement: ethanol odor as a conditioned reinforcer in rat pups. Behav Neural Biol 52(1):1–19.  https://doi.org/10.1016/S0163-1047(89)90122-2 CrossRefPubMedGoogle Scholar
  54. Molina JC, Spear NE, Spear LP, Mennella JA, Lewis MJ (2007) The International Society for Developmental Psychobiology 39th annual meeting symposium: alcohol and development: beyond fetal alcohol syndrome. Dev Psychobiol 49(3):227–242.  https://doi.org/10.1002/dev.20224 CrossRefPubMedPubMedCentralGoogle Scholar
  55. National Research Council (2011) Guide for the care and use of laboratory animal, 8th edn. Washington, DC: National Academic PressGoogle Scholar
  56. O’Leary CM, Jacoby PJ, Bartu A et al (2013) Maternal alcohol use and sudden infant death syndrome and infant mortality excluding SIDS. Pediatrics 131(3):e770–e778.  https://doi.org/10.1542/peds.2012-1907 CrossRefPubMedGoogle Scholar
  57. Parazzini F, Chatenoud L, Surace M, Tozzi L, Salerio B, Bettoni G, Benzi G (2003) Moderate alcohol drinking and risk of preterm birth. Eur J Clin Nutr 57(10):1345–1349.  https://doi.org/10.1038/sj.ejcn.1601690 CrossRefPubMedGoogle Scholar
  58. Parnell SE, Ramadoss J, Delp MD, Ramsey MW, Chen WJA, West JR, Cudd TA (2007) Chronic ethanol increases fetal cerebral blood flow specific to the ethanol-sensitive cerebellum under normoxaemic, hypercapnic and acidaemic conditions: ovine model. Exp Physiol 92(5):933–943.  https://doi.org/10.1113/expphysiol.2007.038091 CrossRefPubMedGoogle Scholar
  59. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296(17):2124–2132.  https://doi.org/10.1001/jama.296.17.2124 CrossRefPubMedGoogle Scholar
  60. Pautassi RM, Sanders S, Miller S, Spear N, Molina JC (2006) Early ethanol’s anxiolytic effects assessed through an unconditional stimulus revaluation procedure. Alcohol Clin Exp Res 30(3):448–459.  https://doi.org/10.1111/j.1530-0277.2006.00049.x CrossRefPubMedGoogle Scholar
  61. Pautassi RM, Nizhnikov M, Molina JC, Boehm SL II, Spear N (2007) Differential effects of ethanol and midazolam upon the devaluation of an aversive memory in infant rats. Alcohol 41(6):421–431.  https://doi.org/10.1016/j.alcohol.2007.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peadon E, O’Leary C, Bower C, Elliott E (2007) Impacts of alcohol use in pregnancy—the role of the GP. Aust Fam Physician 36(11):935–939PubMedGoogle Scholar
  63. Pepino MY, Kraebel KS, López MF, Spear NE, Molina JC (1998) Behavioral detection of low concentrations of ethanol in milk in the preweanling rat. Alcohol 15(4):337–353.  https://doi.org/10.1016/S0741-8329(97)00154-7 CrossRefPubMedGoogle Scholar
  64. Pequignot JM, Spielvogel H, Caceres E, Rodriguez A, Semporé B, Pequignot J, Favier R (1997) Influence of gender and endogenous sex steroids on catecholaminergic structures involved in physiological adaptation to hypoxia. Pflugers Arch Eur J Physiol 433(5):580–586.  https://doi.org/10.1007/s004240050317 CrossRefGoogle Scholar
  65. Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B (2007) Factors influencing apnea and bradycardia of prematurity—implications for neurodevelopment. Neonatology 91(3):155–161.  https://doi.org/10.1159/000097446 CrossRefPubMedGoogle Scholar
  66. Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112(2):123–134.  https://doi.org/10.1016/S0034-5687(98)00026-7 CrossRefPubMedGoogle Scholar
  67. Pueta M, Abate P, Haymal OB et al (2008) Ethanol exposure during late gestation and nursing in the rat: effects upon maternal care, ethanol metabolism and infantile milk intake. Pharmacol Biochem Behav 91(1):21–31.  https://doi.org/10.1016/j.pbb.2008.06.007.Ethanol CrossRefPubMedPubMedCentralGoogle Scholar
  68. Revillo DA, Cotella E, Paglini MG, Arias C (2015) Contextual learning and context effects during infancy: 30years of controversial research revisited. Physiol Behav 148:6–21.  https://doi.org/10.1016/j.physbeh.2015.02.012 CrossRefPubMedGoogle Scholar
  69. Sabino J, da Silva A, Resstel L et al (2014) Effect of chronic ethanol exposure on rat ventilatory responses to hypoxia and hypercapnia. Clinics 69(1):360–366.  https://doi.org/10.1016/0034-5687(96)00051-5 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Savage DD, Becher M, de la Torre AJ, Sutherland RJ (2002) Dose-dependent effects of prenatal ethanol exposure on synaptic plasticity and learning in mature offspring. Alcohol Clin Exp Res 26(11):1752–1758.  https://doi.org/10.1097/01.ALC.0000038265.52107.20 CrossRefPubMedGoogle Scholar
  71. Schechtman VL, Harper RM, Wilson AJ, Southall DP (1991) Sleep apnea in infants who succumb to the sudden infant death syndrome. Pediatrics 87(6):841–846PubMedGoogle Scholar
  72. Schröck A, Fidi C, Löw M, Baumgarten K (1989) Low-dose ethanol for inhibition of preterm uterine activity. Am J Perinatol 6(02):191–195.  https://doi.org/10.1055/s-2007-999574 CrossRefPubMedGoogle Scholar
  73. Sirieix CM, Tobia CM, Schneider RW, Darnall RA (2015) Impaired arousal in rat pups with prenatal alcohol exposure is modulated by GABAergic mechanisms. Physiol Rep 3(6):e12424.  https://doi.org/10.14814/phy2.12424 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Smith GN, Brien JF, Carmichael L, Homan J, Clarke DW, Patrick J (1989) Development of tolerance to ethanol-induced suppression of breathing movements and brain activity in the near-term fetal sheep during short-term maternal administration of ethanol. J Dev Physiol 11(3):189–197PubMedGoogle Scholar
  75. Smith GN, Brien JF, Homan J, Carmichael L, Treissman D, Patrick J (1990) Effect of ethanol on ovine fetal and maternal plasma prostaglandin E2 concentrations and fetal breathing movements. J Dev Physiol 14(1):23–28PubMedGoogle Scholar
  76. Thach BT (2002) Graded arousal responses in infants: advantages and disadvantages of a low threshold for arousal. Sleep Med 3(Suppl 2):S37–S40.  https://doi.org/10.1016/S1389-9457(02)00162-4 CrossRefPubMedGoogle Scholar
  77. Topper L, Baculis B, Valenzuela C (2015) Exposure of neonatal rats to alcohol has differential effects on neuroinflammation and neuronal survival in the cerebellum and hippocampus. J Neuroinflammation 12(1):160.  https://doi.org/10.1186/s12974-015-0382-9 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tran TD, Cronise K, Marino MD, Jenkins WJ, Kelly SJ (2000) Critical periods for the effects of alcohol exposure on brain weight, body weight, activity and investigation. Behav Brain Res 116(1):99–110.  https://doi.org/10.1016/S0166-4328(00)00263-1 CrossRefPubMedGoogle Scholar
  79. Vojcek L, Lampé LG, Princzkel E, Turnbull AC (1988) Effects of ethanol infusion on foetal EEG and breathing movements. Acta Physiol Hung 71(4):511–515PubMedGoogle Scholar
  80. Waters KA, Tinworth KD (2005) Habituation of arousal responses after intermittent hypercapnic hypoxia in piglets. Am J Respir Crit Care Med 171(11):1305–1311.  https://doi.org/10.1164/rccm.200405-595OC CrossRefPubMedGoogle Scholar
  81. Welch JH, Mayfield JJ, Leibowitz AL, Baculis BC, Valenzuela CF (2016) Third trimester-equivalent ethanol exposure causes micro-hemorrhages in the rat brain. Neuroscience 324:107–118.  https://doi.org/10.1016/j.neuroscience.2016.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Winer BJ (1991) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  83. Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36(2):229–240.  https://doi.org/10.1016/S0896-6273(02)00965-0 CrossRefPubMedGoogle Scholar
  84. Zucca S, Valenzuela CF (2010) Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons. J Neurosci 30(19):6776–6781.  https://doi.org/10.1523/JNEUROSCI.5405-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. F. Macchione
    • 1
    • 2
  • F. Anunziata
    • 1
  • B. O. Haymal
    • 1
  • P. Abate
    • 1
    • 2
  • J. C. Molina
    • 1
    • 2
    • 3
  1. 1.Instituto de Investigación Médica Mercedes y Martín FerreyraINIMEC-CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Facultad de PsicologíaUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Center for Development and Behavioral NeuroscienceBinghamton UniversityBinghamtonUSA

Personalised recommendations