, Volume 235, Issue 2, pp 377–392 | Cite as

(±)-MDMA and its enantiomers: potential therapeutic advantages of R(−)-MDMA

  • Elizabeth G. Pitts
  • Daniel W. Curry
  • Karly N. Hampshire
  • Matthew B. Young
  • Leonard L. Howell


The use of (±)-3,4-methylenedioxymethamphetamine ((±)-MDMA) as an adjunct to psychotherapy in the treatment of psychiatric and behavioral disorders dates back over 50 years. Only in recent years have controlled and peer-reviewed preclinical and clinical studies lent support to (±)-MDMA’s hypothesized clinical utility. However, the clinical utility of (±)-MDMA is potentially mitigated by a range of demonstrated adverse effects. One potential solution could lie in the individual S(+) and R(−) enantiomers that comprise (±)-MDMA. Individual enantiomers of racemic compounds have been employed in psychiatry to improve a drug’s therapeutic index. Although no research has explored the individual effects of either S(+)-MDMA or R(−)-MDMA in humans in a controlled manner, preclinical research has examined similarities and differences between the two molecules and the racemic compound. This review addresses information related to the pharmacodynamics, neurotoxicity, physiological effects, and behavioral effects of S(+)-MDMA and R(−)-MDMA that might guide preclinical and clinical research. The current preclinical evidence suggests that R(−)-MDMA may provide an improved therapeutic index, maintaining the therapeutic effects of (±)-MDMA with a reduced side effect profile, and that future investigations should investigate the therapeutic potential of R(−)-MDMA.


MDMA Enantiomer Isomer Therapeutic R(−)-MDMA 


Compliance with ethical standards

Conflict of interest

M.B.Y. became employed by Shire Pharmaceuticals (Lexington, MA, USA) after completion of the studies described herein. M.B.Y. was supported by a NIH/NIGMS IRACDA grant K21 GM000680 awarded to Emory University. L.L.H. was supported by NIH/NIDA K05 DA031246. The Yerkes National Primate Research Center is supported by NIH P51OD11132. The other authors declare that they have no conflicts of interest.

Supplementary material

213_2017_4812_MOESM1_ESM.pdf (111 kb)
ESM 1 (PDF 111 kb)


  1. Acquas E, Pisanu A, Spiga S, Plumitallo A, Zernig G, Di Chiara G (2007) Differential effects of intravenous R,S-(+/−)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its S(+)- and R(−)-enantiomers on dopamine transmission and extracellular signal regulated kinase phosphorylation (pERK) in the rat nucleus accumbens shell. J Neurochem 102(1):121–132. PubMedCrossRefGoogle Scholar
  2. Adamson S, Metzner R (1988) The nature of the MDMA experience and its role in healing, psychotherapy and spiritual practice. ReVision 10:59–72Google Scholar
  3. Amoroso T (2015) The psychopharmacology of ±3,4 methylenedioxymethamphetamine and its role in the treatment of posttraumatic stress disorder. J Psychoactive Drugs 00(5):1–8. CrossRefGoogle Scholar
  4. Amoroso T, Workman M (2016) Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: a preliminary meta-analysis and comparison to prolonged exposure therapy. J Psychopharmacol (Oxf, Engl) 30(7):595–600. CrossRefGoogle Scholar
  5. Anderson GM, Braun G, Braun U, Nichols DE, Shulgin aT (1978) Absolute configuration and psychotomimetic activity. NIDA Res Monogr: 8–15Google Scholar
  6. Ando RD, Benko A, Ferrington L, Kirilly E, Kelly PA, Bagdy G (2006) Partial lesion of the serotonergic system by a single dose of MDMA results in behavioural disinhibition and enhances acute MDMA-induced social behaviour on the social interaction test. Neuropharmacology 50(7):884–896. PubMedCrossRefGoogle Scholar
  7. Ballesta S, Reymond G, Pozzobon M, Duhamel JR (2016) Effects of MDMA injections on the behavior of socially-housed long-tailed macaques (Macaca fascicularis). PLoS One 11(2):1–10. CrossRefGoogle Scholar
  8. Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149(1-2):159–163. PubMedCrossRefGoogle Scholar
  9. BBC (2001) Ecstasy & AgonyGoogle Scholar
  10. Biezonski DK, Meyer JS (2011) The nature of 3, 4-methylenedioxymethamphetamine (MDMA)-induced serotonergic dysfunction: evidence for and against the neurodegeneration hypothesis. Curr Neuropharmacol 9(1):84–90. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bradbury S, Bird J, Colussi-Mas J, Mueller M, Ricaurte G, Schenk S (2014) Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release. Addict Biol 19(5):874–884. PubMedCrossRefGoogle Scholar
  12. Brady K, Pearlstein T, Asnis GM, Baker D, Rothbaum B, Sikes CR, Farfel GM (2000) Efficacy and safety of sertraline treatment of posttraumatic stress disorder: a randomized controlled trial. JAMA 283(14):1837–1844. PubMedCrossRefGoogle Scholar
  13. Broening HW, Bowyer JF, Slikker W (1995) Age-dependent sensitivity of rats to the long-term effects of the serotonergic neurotoxicant (+/−)-3,4-methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the MDMA-induced thermal response. J Pharmacol Exp Ther 275(1):325–333PubMedGoogle Scholar
  14. Bruno R, Matthews AJ, Topp L, Degenhardt L, Gomez R, Dunn M (2009) Can the severity of dependence scale be usefully applied to ‘ecstasy’? Neuropsychobiology 60(3-4):137–147. PubMedCrossRefGoogle Scholar
  15. Burke WJ, Kratochvil CJ (2002) Stereoisomers in psychiatry: the case of escitalopram. Prim Care Compan J Clin Psychiatry 4(01):20–24. CrossRefGoogle Scholar
  16. Cami J, Farré M, Mas M, Roset PN, Poudevida S, Mas A, San L, de la Torre R (2000) Human pharmacology of 3,4-methylenedioxymethamphetamine (“ecstasy”): psychomotor performance and subjective effects. J Clin Psychopharmacol 20(4):455–466. PubMedCrossRefGoogle Scholar
  17. Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39(3):210–271. PubMedCrossRefGoogle Scholar
  18. Capurro A, Reyes-Parada M, Olazabal D, Perrone R, Silveira R, Macadar O (1997) Aggressive behavior and jamming avoidance response in the weakly electric fish Gymnotus carapo: effects of 3,4-methylenedioxymethamphetamine (MDMA). Comp Biochem Physiol - A Physiology 118(3):831–840. CrossRefGoogle Scholar
  19. Center for Behavioral Health Statistics and Quality (2015) Behavioral health trends in the United States: results from the 2014 National Survey on Drug Use and Health (HHS Publication No. SMA 15–4927, NSDUH Series H-50). Retrieved from
  20. Chang L, Grob CS, Ernst T, Itti L, Mishkin FS, Jose-Melchor R, Poland RE (2000) Effect of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] on cerebral blood flow: a co-registered SPECT and MRI study. Psychiatry Res 98(1):15–28. PubMedCrossRefGoogle Scholar
  21. Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee LC, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. Morbidity and mortality weekly report surveillance summaries (Washington, DC: 2002) 65:1–23. Doi:
  22. Colado MI, O'Shea E, Granados R, Esteban B, Martín AB, Green AR (1999) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of dark agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy’) administration. Br J Pharmacol 126(4):911–924. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Curry DW, Young MB, Tran AN, Daoud GE, Howell LL (2017) Separating the agony from ecstasy: R(−)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology 128:196–206PubMedCrossRefGoogle Scholar
  24. Danforth AL, Struble CM, Yazar-Klosinski B, Grob CS (2016) MDMA-assisted therapy: a new treatment model for social anxiety in autistic adults. Prog Neuro-Psychopharmacol Biol Psychiatry 64:237–249. CrossRefGoogle Scholar
  25. Davies NM, Teng XW (2003) Importance of chirality in drug therapy and pharmacy practice: implications for psychiatry. Adv Pharm 1:242–252Google Scholar
  26. Daza-Losada M, Rodriguez-Arias M, Maldonado C, Aguilar MA, Guerri C, Minarro J (2009) Acute behavioural and neurotoxic effects of MDMA plus cocaine in adolescent mice. Neurotoxicol Teratol 31(1):49–59. PubMedCrossRefGoogle Scholar
  27. Doblin R (2002) A clinical plan for MDMA (ecstasy) in the treatment of posttraumatic stress disorder (PTSD): partnering with the FDA. J Psychoactive Drugs 34(2):185–194. PubMedCrossRefGoogle Scholar
  28. Doblin R, Greer G, Holland J, Jerome L, Mithoefer MC, Sessa B (2014) A reconsideration and response to Parrott AC (2013) “human psychobiology of MDMA or ‘ecstasy’: an overview of 25 years of empirical research”. Hum Psychopharmacol 29(2):105–108. PubMedCrossRefGoogle Scholar
  29. Downing J (1986) The psychological and physiological effects of MDMA on normal volunteers. J Psychoactive Drugs 18(4):335–340. PubMedCrossRefGoogle Scholar
  30. Dumont GJ, Sweep FC, van der Steen R, Hermsen R, Donders AR, Touw DJ, van Gerven JM, Buitelaar JK, Verkes RJ (2009) Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci 4(4):359–366. PubMedCrossRefGoogle Scholar
  31. Emiliano AB, Fudge JL (2004) From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology 29(5):833–846. PubMedCrossRefGoogle Scholar
  32. Erritzoe D, Frokjaer VG, Holst KK, Christoffersen M, Johansen SS, Svarer C, Madsen J, Rasmussen PM, Ramsoy T, Jernigan TL, Knudsen GM (2011) In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) and hallucinogen users. Arch Gen Psychiatry 68(6):562–576. PubMedCrossRefGoogle Scholar
  33. Falk EM, Cook VJ, Nichols DE, Sprague JE (2002) An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol Biochem Behav 72(3):617–622. PubMedCrossRefGoogle Scholar
  34. Fantegrossi WE (2008) In vivo pharmacology of MDMA and its enantiomers in rhesus monkeys. Exp Clin Psychopharmacol 16(1):1–12. PubMedCrossRefGoogle Scholar
  35. Fantegrossi WE, Ullrich T, Rice KC, Woods JH, Winger G (2002) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers as reinforcers in rhesus monkeys: serotonergic involvement. Psychopharmacology 161(4):356–364. PubMedCrossRefGoogle Scholar
  36. Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (2003) Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine (“ecstasy”) and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology 166(3):202–211. PubMedCrossRefGoogle Scholar
  37. Farfel GM, Vosmer GL, Seiden LS (1992) The N-methyl-d-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine 3,4-methylenedioxymethamphetamine and p-chloroamphetamine. Brain Res 595(1):121–127. PubMedCrossRefGoogle Scholar
  38. Forsling M, Fallon JK, Kicman AT, Hutt AJ, Cowan DA, Henry JA (2001) Arginine vasopressin release in response to the administration of 3,4-methylenedioxymethamphetamine (“ecstasy”): is metabolism a contributory factor? J Pharm Pharmacol 53(10):1357–1363. PubMedCrossRefGoogle Scholar
  39. Forsling ML, Fallon JK, Shah D, Tilbrook GS, Da C, Kicman AT, Hutt AJ (2002) The effect of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and its metabolites on neurohypophysial hormone release from the isolated rat hypothalamus. Br J Pharmacol 135(3):649–656. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Frau L, Simola N, Plumitallo A, Morelli M (2013) Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility. J Neurochem 124(1):69–78. PubMedCrossRefGoogle Scholar
  41. Globus MY, Busto R, Lin B, Schnippering H, Ginsberg MD (1995) Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem 65(3):1250–1256PubMedCrossRefGoogle Scholar
  42. Gouzoulis-Mayfrank E, Thelen B, Habermeyer E, Kunert HJ, Kovar K-A, Lindenblatt H, Hermle L, Spitzer M, Sass H (1999) Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and d -methamphetamine in healthy volunteers. Psychopharmacology 142(1):41–50. PubMedCrossRefGoogle Scholar
  43. Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55(3):463–508. PubMedCrossRefGoogle Scholar
  44. Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in a clinical setting. J Psychoactive Drugs 18(4):319–327. PubMedCrossRefGoogle Scholar
  45. Greer G, Tolbert R (1990) The therapeutic use of MDMA. Ecstasy: the clinical, pharmacological and neurotoxicological effects of the drug MDMA SE - 2 9: 21-35.
  46. Grinspoon L, Bakalar JB (1986) Can drugs be used to enhance the psychotherapeutic process? Am J Psychother 40(3):393–404PubMedCrossRefGoogle Scholar
  47. Grob CS, Poland RE, Chang L, Ernst T (1996) Psychobiologic effects of 3,4-methylenedioxymethamphetamine in humans: methodological considerations and preliminary observations. Behav Brain Res 73(1-2):103–107PubMedCrossRefGoogle Scholar
  48. Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (+/−)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci: Off J Soc Neurosci 19(1):5096–5107. CrossRefGoogle Scholar
  49. Henry JA, Jeffreys KJ, Dawling S (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 340(8816):384–387. PubMedCrossRefGoogle Scholar
  50. Hiramatsu M, Cho AK (1990) Enantiomeric differences in the effects of 3,4-methylenedioxymethamphetamine on extracellular monoamines and metabolites in the striatum of freely-moving rats: an in vivo microdialysis study. Neuropharmacology 29(3):269–275. PubMedCrossRefGoogle Scholar
  51. Holland J (2001) Ecstasy: the complete guide 454Google Scholar
  52. Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Piggott MJ, Brotchie JM (2011) Characterization of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers in vitro and in the MPTP-lesioned primate: R-MDMA reduces severity of dyskinesia, whereas S-MDMA extends duration of ON-time. J Neurosci: Off J Soc Neurosci 31(19):7190–7198. CrossRefGoogle Scholar
  53. Hyttel J (1977) Neurochemical characterization of a new potent and selective serotonin uptake inhibitor: Lu 10-171. Psychopharmacology 51(3):225–233. PubMedCrossRefGoogle Scholar
  54. Hyttel J (1982) Citalopram—pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuro-Psychopharmacol Biol Psychiatry 6(3):277–295. CrossRefGoogle Scholar
  55. Jacobsen LK, Southwick SM, Kosten TR (2001) Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am J Psychiatry 158(8):1184–1190. PubMedCrossRefGoogle Scholar
  56. Jerome L, Schuster S, Yazar-Klosinski BB (2013) Can MDMA play a role in the treatment of substance abuse? Curr Drug Abuse Rev 6(1):54–62. PubMedCrossRefGoogle Scholar
  57. Johansen PO, Krebs TS (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol (Oxf, Engl) 23(4):389–391. CrossRefGoogle Scholar
  58. Johnson MP, Hoffman AJ, Nichols DE (1986) Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132(2-3):269–276. PubMedCrossRefGoogle Scholar
  59. Johnson M, Letter AA, Merchant K, Hanson GR, Gibb JW (1988) Effects of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine isomers on central serotonergic, dopaminergic and nigral neurotensin systems of the rat. J Pharmacol Exp Ther 244(3):977–982PubMedGoogle Scholar
  60. Kamilar-Britt P, Bedi G (2015) The prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA): controlled studies in humans and laboratory animals. Neurosci Biobehav Rev 57:433–446. PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kibler JL (2009) Posttraumatic stress and cardiovascular disease risk. J Trauma Dissociation: Off J Int Soc Stud Dissociation (ISSD) 10(2):135–150. CrossRefGoogle Scholar
  62. Kibler JL, Joshi K, Ma M (2009) Hypertension in relation to posttraumatic stress disorder and depression in the US National Comorbidity Survey. Behav Med (Washington, DC) 34:125–132. CrossRefGoogle Scholar
  63. Kil HY, Zhang J, Piantadosi CA (1996) Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 16(1):100–106. CrossRefGoogle Scholar
  64. Kirkpatrick MG, Gunderson EW, Perez AY, Haney M, Foltin RW, Hart CL (2012) A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 219(1):109–122. PubMedCrossRefGoogle Scholar
  65. Kish SJ, Fitzmaurice PS, Chang LJ, Furukawa Y, Tong J (2010) Low striatal serotonin transporter protein in a human polydrug MDMA (ecstasy) user: a case study. J Psychopharmacol (Oxf, Engl) 24(2):281–284. CrossRefGoogle Scholar
  66. Kolbrich EA, Goodwin RS, Gorelick DA, Hayes RJ, Stein EA, Ma H (2008) Physiological and subjective responses to controlled oral 3,4-methylenedioxymethamphetamine administration. J Clin Psychopharmacol 28(4):432–440. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kupferschmidt K (2017) All clear for the decisive trial of ecstasy in PTSD patients. Science MagazineGoogle Scholar
  68. Kuypers KP, de la Torre R, Farre M, Yubero-Lahoz S, Dziobek I, Van den Bos W, Ramaekers JG (2014) No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS One 9(6):e100719. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Li X, Rubio FJ, Zeric T, Bossert JM, Kambhampati S, Cates HM, Kennedy PJ, Liu QR, Cimbro R, Hope BT, Nestler EJ, Shaham Y (2015) Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and trkb, glutamate receptors, and epigenetic enzymes in cue-activated fos-expressing dorsal striatal neurons. J Neurosci: Off J Soc Neurosci 35(21):8232–8244. CrossRefGoogle Scholar
  70. Liechti ME, Vollenweider FX (2001) Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies. Hum psychopharmacol 16(8):589–598. PubMedCrossRefGoogle Scholar
  71. Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000a) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 22(5):513–521. PubMedCrossRefGoogle Scholar
  72. Liechti ME, Saur MR, Gamma A, Hell D, Vollenweider FX (2000b) Psychological and physiological effects of MDMA (‘ecstasy’) after pretreatment with the 5-HT2 antagonist ketanserin in healthy humans. Neuropsychopharmacology 23(4):396–404. PubMedCrossRefGoogle Scholar
  73. Liester MB, Grob CS, Bravo GL, Walsh RN (1992) Phenomenology and sequelae of 3,4-methylenedioxymethamphetamine use. J Nerv Ment Dis 180(6):345–352; discussion 353-4. PubMedCrossRefGoogle Scholar
  74. Lyon RA, Glennon RA, Titeler M (1986) 3,4-Methylenedioxymethamphetamine (MDMA): stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology 88(4):525–526PubMedCrossRefGoogle Scholar
  75. Machalova A, Slais K, Vrskova D, Sulcova A (2012) Differential effects of modafinil, methamphetamine, and MDMA on agonistic behavior in male mice. Pharmacol Biochem Behav 102(2):215–223. PubMedCrossRefGoogle Scholar
  76. Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci: Off J Soc Neurosci 18(13):5086–5094CrossRefGoogle Scholar
  77. Malberg JE, Sabol KE, Seiden LS (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat. J Pharmacol Exp Ther 278(1):258–267PubMedGoogle Scholar
  78. MAPS (2015) Clinical research with psychedelicsGoogle Scholar
  79. McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”): a controlled study in humans. Neuropsychopharmacology 10(2):129–138. PubMedCrossRefGoogle Scholar
  80. McCann UD, Eligulashvili V, Mertl M, Murphy DL, Ricaurte GA (1999) Altered neuroendocrine and behavioral responses to m-chlorophenylpiperazine in 3,4-methylenedioxymethamphetamine (MDMA) users. Psychopharmacology 147(1):56–65. PubMedCrossRefGoogle Scholar
  81. McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30:1741–1750PubMedPubMedCentralCrossRefGoogle Scholar
  82. McCann UD, Szabo Z, Vranesic M, Palermo M, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2008) Positron emission tomographic studies of brain dopamine and serotonin transporters in abstinent 3,4-methylenedioxymethamphetamine (ecstasy) users: relationship to cognitive performance. Psychopharmacology 200(3):439–450. PubMedPubMedCentralCrossRefGoogle Scholar
  83. McClung J, Fantegrossi W, Howell LL (2010) Reinstatement of extinguished amphetamine self-administration by 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers in rhesus monkeys. Psychopharmacology 210(1):75–83. PubMedPubMedCentralCrossRefGoogle Scholar
  84. McRae AL (2002) Escitalopram H Lundbeck. Current opinion in investigational drugs (London, England: 2000) 3:1225–9Google Scholar
  85. Meyer A, Mayerhofer A, Kovar KA, Schmidt WJ (2002) Rewarding effects of the optical isomers of 3,4-methylenedioxy-methylamphetamine (‘Ecstasy’) and 3,4-methylenedioxy-ethylamphetamine (‘Eve’) measured by conditioned place preference in rats. Neurosci Lett 330(3):280–284. PubMedCrossRefGoogle Scholar
  86. Meyer MR, Peters FT, Maurer HH (2008) The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic 3,4-methylenedioxy-methamphetamine and its enantiomers. Drug Metab Dispos: Biol Fate Chem 36(11):2345–2354. CrossRefGoogle Scholar
  87. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/−}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol (Oxf, Engl) 25(4):439–452. CrossRefGoogle Scholar
  88. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B, Michel Y, Brewerton TD, Doblin R (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol (Oxf, Engl) 27(1):28–39. CrossRefGoogle Scholar
  89. Mithoefer MC, Grob CS, Brewerton TD (2016) Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA. Lancet Psychiatry 3(5):481–488. PubMedCrossRefGoogle Scholar
  90. Montgomery SA, Loft H, Sanchez C, Reines EH, Papp M (2001) Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 88(5):282–286. PubMedCrossRefGoogle Scholar
  91. Morley KC, McGregor IS (2000) (+/−)-3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) increases social interaction in rats. Eur J Pharmacol 408(1):41–49. PubMedCrossRefGoogle Scholar
  92. Mueller M, Yuan J, McCann UD, Hatzidimitriou G, Ga R (2013) Single oral doses of (±) 3,4-methylenedioxymethamphetamine (‘Ecstasy’) produce lasting serotonergic deficits in non-human primates: relationship to plasma drug and metabolite concentrations. Int J Neuropsychopharmacol 16(04):791–801. PubMedCrossRefGoogle Scholar
  93. Mueller F, Lenz C, Steiner M, Dolder PC, Walter M, Lang UE, Liechti ME, Borgwardt S (2016) Neuroimaging in moderate MDMA use: a systematic review. Neurosci Biobehav Rev 62:21–34. PubMedCrossRefGoogle Scholar
  94. Muller EE, Locatelli V, Cella S, Penalva A, Novelli A, Cocchi D (1983) Prolactin-lowering and -releasing drugs. Mechanisms of action and therapeutic applications. Drugs 25(4):399–432. PubMedCrossRefGoogle Scholar
  95. Murnane KS, Fantegrossi WE, Godfrey JR, Banks ML, Howell LL (2010) Endocrine and neurochemical effects of 3,4-methylenedioxymethamphetamine and its stereoisomers in rhesus monkeys. J Pharmacol Exp Ther 334(2):642–650. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Murnane KS, Kimmel HL, Rice KC, Howell LL (2012) The neuropharmacology of prolactin secretion elicited by 3,4-methylenedioxymethamphetamine (“ecstasy”): a concurrent microdialysis and plasma analysis study. Horm Behav 61(2):181–190. PubMedCrossRefGoogle Scholar
  97. Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(−) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177(1-2):111–115. PubMedCrossRefGoogle Scholar
  98. Navarro JF, Maldonado E (1999) Behavioral profile of 3,4-methylenedioxy-methamphetamine (MDMA) in agonistic encounters between male mice. Prog Neuro-Psychopharmacol Biol Psychiatry 23(2):327–334. CrossRefGoogle Scholar
  99. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18(4):305–313. PubMedCrossRefGoogle Scholar
  100. Nichols DE, Lloyd DH, Hoffman AJ, Nichols MB, Yim GKW (1982) Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J Med Chem 25(5):530–535. PubMedCrossRefGoogle Scholar
  101. Oberlender R, Nichols DE (1990) (+)-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxy-methamphetamine-like behavioral activity. J Pharmacol Exp Ther 255(3):1098–1106PubMedGoogle Scholar
  102. O'Callaghan JP, Miller DB (1993) Quantification of reactive gliosis as an approach to neurotoxicity assessment. NIDA Res Monogr 136:188–212PubMedGoogle Scholar
  103. Oehen P, Traber R, Widmer V, Schnyder U (2013) A randomized, controlled pilot study of MDMA (+/− 3,4-methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). J Psychopharmacol (Oxf, Engl) 27(1):40–52. CrossRefGoogle Scholar
  104. Parrott AC (2013) Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research. Hum Psychopharmacol 28(4):289–307. PubMedCrossRefGoogle Scholar
  105. Parrott AC (2014) The potential dangers of using MDMA for psychotherapy. J Psychoactive Drugs 46(1):37–43. PubMedCrossRefGoogle Scholar
  106. Parrott AC (2016) Oxytocin, cortisol and 3,4-methylenedioxymethamphetamine: neurohormonal aspects of recreational ‘ecstasy’. Behav Pharmacol 27(8):649–658. PubMedCrossRefGoogle Scholar
  107. Patel R, Titheradge D (2015) MDMA for the treatment of mood disorder: all talk no substance? Ther adv Psychopharmacol 5(3):179–188. PubMedPubMedCentralCrossRefGoogle Scholar
  108. Peters G-JY, Kok G, Schaalma HP (2008) Careers in ecstasy use: do ecstasy users cease of their own accord? Implications for intervention development. BMC Public Health 8(1):376. PubMedPubMedCentralCrossRefGoogle Scholar
  109. Philipps D (2016) F.D.A. agrees to new trials for ecstasy as relief for PTSD patients. New York TimesGoogle Scholar
  110. Pietrzak RH, Goldstein RB, Southwick SM, Grant BF (2011) Prevalence and Axis I comorbidity of full and partial posttraumatic stress disorder in the United States: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J Anxiety disord 25(3):456–465. PubMedCrossRefGoogle Scholar
  111. Pitts EG, Minerva AR, Chandler EB, Kohn JN, Logun MT, Sulima A, Rice KC, Howell LL (2017) 3,4-Methylenedioxymethamphetamine increases affiliative behaviors in squirrel monkeys in a serotonin 2A receptor-dependent manner. Neuropsychopharmacology 42(10):1962–1971. PubMedCrossRefGoogle Scholar
  112. Procopio-Souza R, Fukushiro DF, Trombin TF, Wuo-Silva R, Zanlorenci LH, Lima AJ, Ribeiro LT, Correa JM, Marinho EA, Kameda SR, Andersen ML, Tufik S, Frussa-Filho R (2011) Effects of group exposure on single injection-induced behavioral sensitization to drugs of abuse in mice. Drug Alcohol Depend 118(2-3):349–359. PubMedCrossRefGoogle Scholar
  113. Ramos L, Hicks C, Kevin R, Caminer A, Narlawar R, Kassiou M, McGregor IS (2013) Acute prosocial effects of oxytocin and vasopressin when given alone or in combination with 3,4-methylenedioxymethamphetamine in rats: involvement of the V1A receptor. Neuropsychopharmacology 38(11):2249–2259. PubMedPubMedCentralCrossRefGoogle Scholar
  114. Riedlinger TJ, Riedlinger JE (1994) Psychedelic and entactogenic drugs in the treatment of depression. J Psychoactive Drugs 26(1):41–55. PubMedCrossRefGoogle Scholar
  115. Rogers G, Elston J, Garside R, Roome C, Taylor R, Younger P, Zawada A, Somerville M (2009) The harmful health effects of recreational ecstasy: a systematic review of observational evidence. Health Technol Assess 13(5):1–315. CrossRefGoogle Scholar
  116. Sáez-Briones P, Hernández A (2013) MDMA (3,4-methylenedioxymethamphetamine) analogues as tools to characterize MDMA-like effects: an approach to understand entactogen pharmacology. Curr Neuropharmacol 11(5):521–534. PubMedPubMedCentralCrossRefGoogle Scholar
  117. SAMHSA (Substance Abuse and Mental Health Services Administration) (2002) Office of Applied Studies. Mortality data from the drug abuse warning network, 2001. DAWN Series D-23, DHHS Publication No. (SMA) 03–3781. Rockville, MDGoogle Scholar
  118. Schenk S, Hely L, Lake B, Daniela E, Gittings D, Mash DC (2007) MDMA self-administration in rats: acquisition, progressive ratio responding and serotonin transporter binding. Eur J Neurosci 26(11):3229–3236. PubMedCrossRefGoogle Scholar
  119. Schmidt CJ, Levin JA, Lovenberg W (1987) In vitro and in vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain. Biochem Pharmacol 36(5):747–755. PubMedCrossRefGoogle Scholar
  120. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63(6):1223–1229.\r63/6/1223 [pii] PubMedCrossRefGoogle Scholar
  121. Shioda K, Nisijima K, Yoshino T, Kuboshima K, Iwamura T, Yui K, Kato S (2008) Risperidone attenuates and reverses hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats. Neurotoxicology 29(6):1030–1036. PubMedCrossRefGoogle Scholar
  122. Shulgin A, Shulgin A (1991) Pihkal: a chemical love story. Transform Press, BerkeleyGoogle Scholar
  123. Smith RC, Blumenthal H, Badour C, Feldner MT (2010) An investigation of relations between crystal methamphetamine use and posttraumatic stress disorder. Addict Behav 35(6):625–627. PubMedCrossRefGoogle Scholar
  124. Solowij N, Hall W, Lee N (1992) Recreational MDMA use in Sydney: a profile of ‘Ecstacy’ users and their experiences with the drug. Br J Addict 87(8):1161–1172. PubMedCrossRefGoogle Scholar
  125. Spitzer M, Franke B, Walter H, Buechler J, Wunderlich AP, Schwab M, Kovar KA, Hermle L, Gron G (2001) Enantio-selective cognitive and brain activation effects of N-ethyl-3,4-methylenedioxyamphetamine in humans. Neuropharmacology 41(2):263–271. PubMedCrossRefGoogle Scholar
  126. Sprague JE, Nichols DE (1995) Inhibition of MAO-B protects against MDMA-induced neurotoxicity in the striatum. Psychopharmacology 118(3):357–359. PubMedCrossRefGoogle Scholar
  127. Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19(3):427–441PubMedGoogle Scholar
  128. Steele TD, Nichols DE, Yim GKW (1987) Stereochemical effect S and related amphetamine derivatives on inhibition of uptake of [3H] monoamines synaptosomes from different regions into of rat brain. Biochem Pharmacol 36(14):2297–2303. PubMedCrossRefGoogle Scholar
  129. Stolaroff MJ (2004) The secret chief revealed. Multidisciplinary Association for Psychedelic Studies (MAPS), Sarasota, FLGoogle Scholar
  130. Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247(1):79–87PubMedGoogle Scholar
  131. Tancer M, Johanson CE (2001) The subjective effects of MDMA and mCPP in moderate MDMA users. Drug Alcohol Depend 65(1):97–101. PubMedCrossRefGoogle Scholar
  132. Tancer M, Johanson CE (2003) Reinforcing, subjective, and physiological effects of MDMA in humans: a comparison with d-amphetamine and mCPP. Drug Alcohol Depend 72(1):33–44. PubMedCrossRefGoogle Scholar
  133. Taurah L, Chandler C, Sanders G (2014) Depression, impulsiveness, sleep, and memory in past and present polydrug users of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Psychopharmacology 231(4):737–751. PubMedCrossRefGoogle Scholar
  134. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (2007) A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience 146(2):509–514. PubMedCrossRefGoogle Scholar
  135. Verrico CD, Miller GM, Madras BK (2007) MDMA (ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189(4):489–503. PubMedCrossRefGoogle Scholar
  136. Vizeli P, Liechti ME (2017) Safety pharmacology of acute MDMA administration in healthy subjects. J Psychopharmacol (Oxf, Engl) 31(5):576–588. CrossRefGoogle Scholar
  137. Vizeli P, Schmid Y, Prestin K, Meyer Z, Schwabedissen HE, Liechti ME (2017) Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol 27(3):232–238. CrossRefGoogle Scholar
  138. Vollenweider FX, Gamma A, Liechti M, Huber T (1998) Psychological and cardiovascular effects and short-term sequelae of MDMA (‘Ecstasy’) in MDMA-naive healthy volunteers. Neuropsychopharmacology 19(4):241–251. PubMedCrossRefGoogle Scholar
  139. Wang Z, Woolverton WL (2007) Estimating the relative reinforcing strength of (+/−)-3,4-methylenedioxymethamphetamine (MDMA) and its isomers in rhesus monkeys: comparison to (+)-methamphetamine. Psychopharmacology 189(4):483–488. PubMedCrossRefGoogle Scholar
  140. White SW, Albano AM, Johnson CR, Kasari C, Ollendick T, Klin A, Oswald D, Scahill L (2010) Development of a cognitive-behavioral intervention program to treat anxiety and social deficits in teens with high-functioning autism. Clin Child Fam Psychol Rev 13(1):77–90. PubMedPubMedCentralCrossRefGoogle Scholar
  141. Xie T, Tong L, McLane MW, Hatzidimitriou G, Yuan J, McCann U, Ricaurte G (2006) Loss of serotonin transporter protein after MDMA and other ring-substituted amphetamines. Neuropsychopharmacology 31(12):2639–2651. PubMedCrossRefGoogle Scholar
  142. Young R, Glennon R (2008) MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice. Pharmacol Biochem Behav 88(3):318–331Google Scholar
  143. Young MB, Andero R, Ressler KJ, Howell LL (2015) 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl Psychiatry 5(9):e634. PubMedPubMedCentralCrossRefGoogle Scholar
  144. Young MB, Norrholm SD, Khoury LM, Jovanovic T, Rauch SAM, Reiff CM, Dunlop BW, Rothbaum BO, Howell LL (2017) Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA). Psychopharmacology 234(19):2883–2895. PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Elizabeth G. Pitts
    • 1
  • Daniel W. Curry
    • 1
    • 2
  • Karly N. Hampshire
    • 1
  • Matthew B. Young
    • 1
  • Leonard L. Howell
    • 1
    • 3
  1. 1.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.Neuropsychopharmacology Research Unit, Department of PsychiatryYale University School of MedicineNew HavenUSA
  3. 3.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA

Personalised recommendations