Advertisement

Psychopharmacology

, Volume 235, Issue 2, pp 433–445 | Cite as

Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine

  • Liana Fattore
  • Alessandro Piva
  • Mary Tresa Zanda
  • Guido Fumagalli
  • Cristiano Chiamulera
Review

Abstract

Rationale

Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial “psychedelic effect,” which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy.

Objective

Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories.

Results

We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition.

Conclusions

Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.

Keywords

Post-traumatic stress disorders Substance use disorders Reconsolidation Maladaptive memories Cannabinoids Ketamine 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130PubMedCrossRefGoogle Scholar
  2. Agren T (2014) Human reconsolidation: a reactivation and update. Brain Res Bull 105:70–82PubMedCrossRefGoogle Scholar
  3. Akirav I (2011) The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci 5:34PubMedPubMedCentralGoogle Scholar
  4. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56PubMedCrossRefGoogle Scholar
  5. Almeida-Corrêa S, Amaral OB (2014) Memory labilization in reconsolidation and extinction—evidence for a common plasticity system? J Physiol Paris 108:292–306PubMedCrossRefGoogle Scholar
  6. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders, Fifth Edition (DSM-5). Washington, D.C.Google Scholar
  7. Amoroso T, Workman M (2016) Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: a preliminary meta-analysis and comparison to prolonged exposure therapy. J Psychopharmacol 30:595–600PubMedCrossRefGoogle Scholar
  8. Atsak P, Hauer D, Campolongo P, Schelling G, McGaugh JL, Roozendaal B (2012) Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory. Proc Natl Acad Sci U S A 109:3504–3509PubMedPubMedCentralCrossRefGoogle Scholar
  9. Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226:631–647PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barak S, Liu F, Hamida SB, Yowell QV, Neasta J, Kharazia V, Janak PH, Ron D (2013) Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci 16:1111–1117PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bartlett MJ, Joseph RM, LePoidevin LM, Parent KL, Laude ND, Lazarus LB, Heien ML, Estevez M, Sherman SJ, Falk T (2016) Long-term effect of sub-anesthetic ketamine in reducing L-DOPA-induced dyskinesias in a preclinical model. Neurosci Lett 612:121–125PubMedCrossRefGoogle Scholar
  12. Bernardi RE, Lattal KM, Berger SP (2006) Postretrieval propranolol disrupts a cocaine conditioned place preference. Neuroreport 17:1443–1447PubMedCrossRefGoogle Scholar
  13. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8:75PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bitencourt RM, Pamplona FA, Takahashi RN (2008) Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. Eur Neuropsychopharmacol 18:849–859PubMedCrossRefGoogle Scholar
  15. Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of pavlovian learning. Psychol Bull 114:80–99PubMedCrossRefGoogle Scholar
  16. Bouton ME, Bolles RC (1979) Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 5:368–378PubMedCrossRefGoogle Scholar
  17. Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N (2016) Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry 79:557–567PubMedCrossRefGoogle Scholar
  18. Bucherelli C, Baldi E, Mariottini C, Passani MB, Blandina P (2006) Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learn Mem 13:426–430PubMedCrossRefGoogle Scholar
  19. Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA, Moskal JR (2013) GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38:729–742PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bustos SG, Maldonado H, Molina VA (2009) Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology 34:446–457PubMedCrossRefGoogle Scholar
  21. Caffino L, Di Chio M, Giannotti G, Venniro M, Mutti A, Padovani L, Cheung D, Fumagalli GF, Yew DT, Fumagalli F, Chiamulera C (2016) The modulation of BDNF expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: effects of single infusion vs. chronic self-administration in rats. Pharmacol Res 104:22–30PubMedCrossRefGoogle Scholar
  22. Cameron C, Watson D, Robinson J (2014) Use of a synthetic cannabinoid in a correctional population for PTSD related insomnia and nightmares, chronic pain, harm reduction and other indications: a retrospective evaluation. J Clin Psychopharmacol 34:559–564PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–524PubMedCrossRefGoogle Scholar
  24. Chiamulera C, Hinnenthal I, Auber A, Cibin M (2014) Reconsolidation of maladaptive memories as a therapeutic target: pre-clinical data and clinical approaches. Front Psychiatry 5:107PubMedPubMedCentralCrossRefGoogle Scholar
  25. Corlett PR, Cambridge V, Gardner JM, Piggot JS, Turner DC, Everitt JC, Arana FS, Morgan HL, Milton AL, Lee JL, Aitken MR, Dickinson A, Everitt BJ, Absalom AR, Adapa R, Subramanian N, Taylor JR, Krystal JH, Fletcher PC (2013) Ketamine effects on memory reconsolidation favor a learning model of delusions. PLoS One 8:e65088PubMedPubMedCentralCrossRefGoogle Scholar
  26. D’Andrea D, Sewell RA (2013) Transient resolution of treatment-resistant posttraumatic stress disorder following ketamine infusion. Biol Psychiatry 74:13–14CrossRefGoogle Scholar
  27. Das RK, Hindocha C, Freeman TP, Lazzarino AI, Curran HV, Kamboj SK (2015) Assessing the translational feasibility of pharmacological drug memory reconsolidation blockade with memantine in quitting smokers. Psychopharmacology 232:3363–3374PubMedPubMedCentralCrossRefGoogle Scholar
  28. Das RK, Kamboj SK, Ramadas M, Yogan K, Gupta V, Redman E, Curran HV, Morgan CJ (2013) Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology 226:781–792PubMedCrossRefGoogle Scholar
  29. Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129:267–272PubMedCrossRefGoogle Scholar
  30. Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538PubMedCrossRefGoogle Scholar
  31. De Carvalho CR, Pamplona FA, Cruz JS, Takahashi RN (2014) Endocannabinoids underlie reconsolidation of hedonic memories in Wistar rats. Psychopharmacology 231:1417–1425PubMedCrossRefGoogle Scholar
  32. de Oliveira AL, Pasqualini Genro B, Diehl F, Molina VA, Quillfeldt JA (2008) Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience 154:1648–1655CrossRefGoogle Scholar
  33. Diergaarde L, Schoffelmeer AN, De Vries TJ (2006) Beta-adrenoceptor mediated inhibition of long-term reward-related memory reconsolidation. Behav Brain Res 170:333–336PubMedCrossRefGoogle Scholar
  34. Duclot F, Perez-Taboada I, Wright KN, Kabbaj M (2016) Prediction of individual differences in fear response by novelty seeking, and disruption of contextual fear memory reconsolidation by ketamine. Neuropharmacology 109:293–305PubMedPubMedCentralCrossRefGoogle Scholar
  35. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35–41PubMedCrossRefGoogle Scholar
  36. Dunbar AB, Taylor JR (2016) Reconsolidation and psychopathology: moving towards reconsolidation-based treatments. Neurobiol Learn Mem 142:162–171PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dunsmoor JE, Paz R (2015) Fear generalization and anxiety: behavioral and neural mechanisms. Biol Psychiatry 78:336–343PubMedCrossRefGoogle Scholar
  38. Exton-McGuinness MTJ, Lee JLC (2015) Reduction in responding for sucrose and cocaine reinforcement by disruption of memory reconsolidation. eNeuro 2(2)Google Scholar
  39. Fang Q, Li FQ, Li YQ, Xue YX, He YY, Liu JF, Lu L, Wang JS (2011) Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats. Pharmacol Biochem Behav 99:738–742PubMedCrossRefGoogle Scholar
  40. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, Kirkwood K, Aan Het Rot M, Lapidus KA, Wan LB, Iosifescu D, Charney DS (2014) Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder—a randomized clinical trial. JAMA Psychiatry 71:681–688PubMedCrossRefGoogle Scholar
  41. Finnie PS, Nader K (2012) The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 36:1667–1707PubMedCrossRefGoogle Scholar
  42. Flavell CR, Lee JLC (2013) Reconsolidation and extinction of an appetitive pavlovian memory. Neurobiol Learn Mem 104:25–31PubMedCrossRefGoogle Scholar
  43. Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ (2006) Stability of recent and remote contextual fear memory. Learn Mem 13:451–457PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fraser GA (2009) The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci Ther 15:84–88PubMedCrossRefGoogle Scholar
  45. Gamma A, Buck A, Berthold T, Liechti ME, Vollenweider FX (2000) 3,4-Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H(2)(15)O]-PET in healthy humans. Neuropsychopharmacology 23:388–395PubMedCrossRefGoogle Scholar
  46. García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, Pérez-Ortiz JM, Caltana L, Ricatti MJ, Brusco A, Maldonado R, Manzanares J (2013) Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 73:388–396PubMedCrossRefGoogle Scholar
  47. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32:140–144CrossRefGoogle Scholar
  48. Gazarini L, Stern CA, Piornedo RR, Takahashi RN, Bertoglio LJ (2014) PTSD-like memory generated through enhanced noradrenergic activity is mitigated by a dual step pharmacological intervention targeting its reconsolidation. Int J Neuropsychopharmacol 18(1)Google Scholar
  49. Girgenti MJ, Ghosal S, LoPresto D, Taylor JR, Duman RS (2017) Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol Dis 100:1–8PubMedCrossRefGoogle Scholar
  50. Glue P, Medlicott NJ, Harland S, Neehoff S, Anderson-Fahey B, Le Nedelec M, Gray A, McNaughton N (2017) Ketamine’s dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. J Psychopharmacol 1:269881117705089Google Scholar
  51. Gobira PH, Lima IV, Batista LA, de Oliveira AC, Resstel LB, Wotjak CT, Aguiar DC, Moreira FA (2017) N-arachidonoyl-serotonin, a dual FAAH and TRPV1 blocker, inhibits the retrieval of contextual fear memory: role of the cannabinoid CB1 receptor in the dorsal hippocampus. J Psychopharmacol 31:750–756PubMedCrossRefGoogle Scholar
  52. Groeber Travis CM, Altman DE, Genovese RF (2015) Ketamine administration diminishes operant responding but does not impair conditioned fear. Pharmacol Biochem Behav 139:84–91PubMedCrossRefGoogle Scholar
  53. Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT (2013) Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 8:e62741PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, Gorzalka BB (2005) Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 30:508–515PubMedCrossRefGoogle Scholar
  55. Hoeffer CA, Cowansage KK, Arnold EC, Banko JL, Moerke NJ, Rodriguez R, Schmidt EK, Klosi E, Chorev M, Lloyd RE, Pierre P, Wagner G, LeDoux JE, Klann E (2011) Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci U S A 108:3383–3388PubMedPubMedCentralCrossRefGoogle Scholar
  56. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500PubMedPubMedCentralCrossRefGoogle Scholar
  57. Honsberger MJ, Taylor JR, Corlett PR (2015) Memories reactivated under ketamine are subsequently stronger: a potential pre-clinical behavioral model of psychosis. Schizophr Res 164:227–233PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hulme SR, Jones OD, Abraham WC (2013) Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 36:353–362PubMedCrossRefGoogle Scholar
  59. Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J (2016) New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 82:1280–1290PubMedPubMedCentralCrossRefGoogle Scholar
  60. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jetly R, Heber A, Fraser G, Boisvert D (2015) The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: a preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 51:585–588PubMedCrossRefGoogle Scholar
  62. Jurkus R, Day HL, Guimarães FS, Lee JL, Bertoglio LJ, Stevenson CW (2016) Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders. Front Pharmacol 7:454PubMedPubMedCentralCrossRefGoogle Scholar
  63. Juven-Wetzler A, Cohen H, Kaplan Z, Kohen A, Porat O, Zohar J (2014) Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol 24:469–479PubMedCrossRefGoogle Scholar
  64. Kobilo T, Hazvi S, Dudai Y (2007) Role of cortical cannabinoid CB1 receptor in conditioned taste aversion memory. Eur J Neurosci 25:3417–3421PubMedCrossRefGoogle Scholar
  65. Kredlow MA, Unger LD, Otto MW (2016) Harnessing reconsolidation to weaken fear and appetitive memories: a meta-analysis of post-retrieval extinction effects. Psychol Bull 142:314–336PubMedCrossRefGoogle Scholar
  66. Kroes MC, Tendolkar I, van Wingen GA, van Waarde JA, Strange BA, Fernández G (2014) An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nat Neurosci 17:204–206PubMedCrossRefGoogle Scholar
  67. Kuhnert S, Meyer C, Koch M (2013) Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behav Brain Res 250:274–284PubMedCrossRefGoogle Scholar
  68. Kupferschmidt K (2014) Can ecstasy treat the agony of PTSD? Science 345:22–23PubMedCrossRefGoogle Scholar
  69. Lee JLC (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–420PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lee JLC, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843PubMedCrossRefGoogle Scholar
  71. Lewis DJ (1979) Psychobiology of active and inactive memory. Psychol Bull 86:1054–1083PubMedCrossRefGoogle Scholar
  72. Lin HC, Mao SC, Gean PW (2006) Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Mem 13:316–321PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lin HC, Mao SC, Su CL, Gean PW (2009) The role of prefrontal cortex CB1 receptors in the modulation of fear memory. Cereb Cortex 19:165–175PubMedCrossRefGoogle Scholar
  74. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534PubMedCrossRefGoogle Scholar
  75. McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358PubMedCrossRefGoogle Scholar
  76. McGhee LL, Maani CV, Garza TH, Gaylord KM, Black IH (2008) The correlation between ketamine and posttraumatic stress disorder in burned service members. J Trauma 64:195–198CrossRefGoogle Scholar
  77. Melis M, Greco B, Tonini R (2014) Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 39:1189–1201PubMedCrossRefGoogle Scholar
  78. Merlo E, Milton AL, Goozee ZY, Theobald DE, Everitt BJ (2014) Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence. J Neurosci 34(7):2422–2431PubMedPubMedCentralCrossRefGoogle Scholar
  79. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74PubMedCrossRefGoogle Scholar
  80. Milekic MH, Alberini CM (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36:521–525PubMedCrossRefGoogle Scholar
  81. Milton AL, Everitt BJ (2012) The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 36:1119–1139PubMedCrossRefGoogle Scholar
  82. Milton AL, Lee JL, Everitt BJ (2008) Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on β-adrenergic receptors. Learn Mem 15:88–92PubMedCrossRefGoogle Scholar
  83. Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555PubMedCrossRefGoogle Scholar
  84. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B, Michel Y, Brewerton TD, Doblin R (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol 27:28–39PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mithoefer MC, Grob CS, Brewerton TD (2016) Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA. Lancet Psychiatry 3:481–488PubMedCrossRefGoogle Scholar
  87. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955PubMedPubMedCentralCrossRefGoogle Scholar
  88. Morena M, Campolongo P (2014) The endocannabinoid system: an emotional buffer in the modulation of memory function. Neurobiol Learn Mem 112:30–43PubMedCrossRefGoogle Scholar
  89. Morena M, Roozendaal B, Trezza V, Ratano P, Peloso A, Hauer D, Atsak P, Trabace L, Cuomo V, McGaugh JL, Schelling G, Campolongo P (2014) Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. Proc Natl Acad Sci U S A 111:18333–18338PubMedPubMedCentralCrossRefGoogle Scholar
  90. Morena M, De Castro V, Gray JM, Palmery M, Trezza V, Roozendaal B, Hill MN, Campolongo P (2015) Training-associated emotional arousal shapes endocannabinoid modulation of spatial memory retrieval in rats. J Neurosci 35:13962–13974PubMedCrossRefGoogle Scholar
  91. Morena M, Berardi A, Peloso A, Valeri D, Palmery M, Trezza V, Schelling G, Campolongo P (2017) Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: consequences for the development of posttraumatic stress disorder. Behav Brain Res 329:215–220PubMedCrossRefGoogle Scholar
  92. Moskal JR, Burgdorf JS, Stanton PK, Kroes RA, Disterhoft JF, Burch RM, Khan AM (2017) The development of rapastinel (formerly GLYX-13); a rapid acting and long lasting antidepressant. Curr Neuropharmacol 15:47–56PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM (2017) Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology 117:316–327PubMedCrossRefGoogle Scholar
  94. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726PubMedCrossRefGoogle Scholar
  96. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A, Potenza MN, Bailey CR, Lin SF, Najafzadeh S, Ropchan J, Henry S, Corsi-Travali S, Carson RE, Huang Y (2013) Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry 18:1034–1040PubMedPubMedCentralCrossRefGoogle Scholar
  97. Neumeister A, Seidel J, Ragen BJ, Pietrzak RH (2015) Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder. Psychoneuroendocrinology 51:577–584PubMedCrossRefGoogle Scholar
  98. Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH (2007) The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology 191:223–231PubMedPubMedCentralCrossRefGoogle Scholar
  99. Oehen P, Traber R, Widmer V, Schnyder U (2013) A randomized, controlled pilot study of MDMA (± 3,4-methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). J Psychopharmacol 27:40–52PubMedCrossRefGoogle Scholar
  100. Pamplona FA, Bitencourt RM, Takahashi RN (2008) Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem 90:290–293PubMedCrossRefGoogle Scholar
  101. Parrott AC (2014) The potential dangers of using MDMA for psychotherapy. J Psychoactive Drugs 46:37–43PubMedCrossRefGoogle Scholar
  102. Pathania R (2015) Therapeutic potential of psychedelic agents. Br J Psychiatry 206:433PubMedCrossRefGoogle Scholar
  103. Pavlov I (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, LondonGoogle Scholar
  104. Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19:6623–6628PubMedCrossRefGoogle Scholar
  105. Rabinak CA, Angstadt M, Sripada CS, Abelson JL, Liberzon I, Milad MR, Phan KL (2013) Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology 64:396–402PubMedCrossRefGoogle Scholar
  106. Rabinak CA, Angstadt M, Lyons M, Mori S, Milad MR, Liberzon I, Phan KL (2014) Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans. Neurobiol Learn Mem 113:125–134PubMedCrossRefGoogle Scholar
  107. Ranganathan M, D’Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology 188:425–444PubMedCrossRefGoogle Scholar
  108. Ratano P, Everitt BJ, Milton AL (2014) The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala. Neuropsychopharmacology 39:2529–2537PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ratano P, Palmery M, Trezza V, Campolongo P (2017) Cannabinoid modulation of memory consolidation in rats: beyond the role of cannabinoid receptor subtype 1. Front Pharmacol 8:200PubMedPubMedCentralCrossRefGoogle Scholar
  110. Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res 203:264–269PubMedPubMedCentralCrossRefGoogle Scholar
  111. Riccio DC, Millin PM, Bogart AR (2006) Reconsolidation: a brief history, a retrieval view, and some recent issues. Learn Mem 13:536–544PubMedCrossRefGoogle Scholar
  112. Richter-Levin G, Maroun M (2010) Stress and amygdala suppression of metaplasticity in the medial prefrontal cortex. Cereb Cortex 20:2433–2441PubMedCrossRefGoogle Scholar
  113. Sachser RM, Crestani AP, Quillfeldt JA, Mello E, Souza T, de Oliveira AL (2015) The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction. Learn Mem 22:584–588PubMedPubMedCentralCrossRefGoogle Scholar
  114. Santana F, Sierra RO, Haubrich J, Crestani AP, Duran JM, de Freitas CL, de Oliveira AL, Quillfeldt JA (2016) Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: effects of CP55,940. Neurobiol Learn Mem 127:42–47PubMedCrossRefGoogle Scholar
  115. Schifano F, Corkery J, Oyefeso A, Tonia T, Ghodse AH (2008) Trapped in the “K-hole”: overview of deaths associated with ketamine misuse in the UK (1993-2006). J Clin Psychopharmacol 28:114–116PubMedCrossRefGoogle Scholar
  116. Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53PubMedCrossRefGoogle Scholar
  117. Schmidt MV, Abraham WC, Maroun M, Stork O, Richter-Levin G (2013) Stress-induced metaplasticity: from synapses to behavior. Neuroscience 250:112–120PubMedCrossRefGoogle Scholar
  118. Schönenberg M, Reichwald U, Domes G, Badke A, Hautzinger M (2005) Effects of peritraumatic ketamine medication on early and sustained posttraumatic stress symptoms in moderately injured accident victims. Psychopharmacology 182:420–425PubMedCrossRefGoogle Scholar
  119. Schönenberg M, Reichwald U, Domes G, Badke A, Hautzinger M (2008) Ketamine aggravates symptoms of acute stress disorder in a naturalistic sample of accident victims. J Psychopharmacol 22:493–497PubMedCrossRefGoogle Scholar
  120. Sessa B (2017) MDMA and PTSD treatment: “PTSD: from novel pathophysiology to innovative therapeutics”. Neurosci Lett 649:176–180PubMedCrossRefGoogle Scholar
  121. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190PubMedCrossRefGoogle Scholar
  122. Sorg BA (2012) Reconsolidation of drug memories. Neurosci Biobehav Rev 36:1400–1417PubMedPubMedCentralCrossRefGoogle Scholar
  123. Stern CA, Gazarini L, Takahashi RN, Guimarães FS, Bertoglio LJ (2012) On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology 37:2132–2142PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stern CA, Gazarini L, Vanvossen AC, Zuardi AW, Galve-Roperh I, Guimaraes FS, Takahashi RN, Bertoglio LJ (2015) Δ9-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. Eur Neuropsychopharmacol 25:958–965PubMedCrossRefGoogle Scholar
  125. Stern CAJ, da Silva TR, Raymundi AM, de Souza CP, Hiroaki-Sato VA, Kato L, Guimarães FS, Andreatini R, Takahashi RN, Bertoglio LJ (2017) Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 125:220–230PubMedCrossRefGoogle Scholar
  126. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795PubMedCrossRefGoogle Scholar
  127. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM (2017) Effects of a ketamine metabolite on synaptic NMDAR function. Nature 546:E1–E3PubMedCrossRefGoogle Scholar
  128. Taylor JR, Torregrossa MM (2015) Pharmacological disruption of maladaptive memory. Handb Exp Pharmacol 228:381–415PubMedCrossRefGoogle Scholar
  129. Tan H, Ahmad T, Loureiro M, Zunder J, Laviolette SR (2014) The role of cannabinoid transmission in emotional memory formation: implications for addiction and schizophrenia. Front Psychiatry 5:73PubMedPubMedCentralGoogle Scholar
  130. Tedesco V, Ravagnani C, Bertoglio D, Chiamulera C (2013) Acute ketamine-induced neuroplasticity: ribosomal protein S6 phosphorylation expression in drug addiction-related rat brain areas. Neuroreport 24:388–393PubMedCrossRefGoogle Scholar
  131. Tedesco V, Mutti A, Auber A, Chiamulera C (2014a) Nicotine-seeking reinstatement is reduced by inhibition of instrumental memory reconsolidation. Behav Pharmacol 25:725–731PubMedCrossRefGoogle Scholar
  132. Tedesco V, Roquet RF, DeMis J, Chiamulera C, Monfils MH (2014b) Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiol Learn Mem 115:78–85PubMedCrossRefGoogle Scholar
  133. Terzian AL, Drago F, Wotjak CT, Micale V (2011) The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front Behav Neurosci 5:49PubMedPubMedCentralCrossRefGoogle Scholar
  134. Thomas KL, Arroyo M, Everitt BJ (2003) Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur J Neurosci 17:1964–1972PubMedCrossRefGoogle Scholar
  135. Torregrossa MM, Taylor JR (2016) Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation. Prog Brain Res 223:91–113PubMedCrossRefGoogle Scholar
  136. Trent S, Barnes P, Hall J, Thomas KL (2017) AMPA receptors control fear extinction through an Arc-dependent mechanism. Learn Mem 24:375–380PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275PubMedCrossRefGoogle Scholar
  138. Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 122:89–129PubMedCrossRefGoogle Scholar
  139. Vose LR, Stanton PK (2017) Synaptic plasticity, metaplasticity and depression. Curr Neuropharmacol 15:71–86PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wang SH, de Oliveira AL, Nader K (2009) Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat Neurosci 12:905–912PubMedCrossRefGoogle Scholar
  141. White CM (2014) 3,4-Methylenedioxymethamphetamine’s (MDMA’s) impact on posttraumatic stress disorder. Ann Pharmacother 48:908–915PubMedCrossRefGoogle Scholar
  142. Winter H, Irle E (2004) Hippocampal volume in adult burn patients with and without posttraumatic stress disorder. Am J Psychiatry 161:2194–2200PubMedCrossRefGoogle Scholar
  143. Womble AL (2013) Effects of ketamine on major depressive disorder in a patient with posttraumatic stress disorder. AANA J 81:118–119PubMedGoogle Scholar
  144. Yazar-Klosinski BB, Mithoefer MC (2017) Potential psychiatric uses for MDMA. Clin Pharmacol Ther 101:194–196PubMedPubMedCentralCrossRefGoogle Scholar
  145. Young MB, Andero R, Ressler KJ, Howell LL (2015) 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl Psychiatry 5:e634PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yu LL, Wang XY, Zhao M, Liu Y, Li YQ, Li FQ, Wang X, Xue YX, Lu L (2009) Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice. Psychopharmacology 204:203–211PubMedCrossRefGoogle Scholar
  147. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KSS, Fang Y, Huang XP, Mayo CL, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA, Gould TD (2017) Zanos et al. reply. Nature 546:E4–E5PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864PubMedCrossRefGoogle Scholar
  150. Zarrindast MR, Navaeian M, Nasehi M (2011) Influence of three-day morphine-treatment upon impairment of memory consolidation induced by cannabinoid infused into the dorsal hippocampus in rats. Neurosci Res 69:51–59PubMedCrossRefGoogle Scholar
  151. Zeng MC, Niciu MJ, Luckenbaugh DA, Ionescu DF, Mathews DC, Richards EM, Franco-Chaves J, Brutsche NE, Zarate CA Jr (2013) Acute stress symptoms do not worsen in posttraumatic stress disorder and abuse with a single subanesthetic dose of ketamine. Biol Psychiatry 73:37–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.National Research Council of ItalyInstitute of Neuroscience-CagliariCagliariItaly
  2. 2.Sezione Farmacologia, Dipt. Diagnostica e Sanità PubblicaUniversità degli Studi di VeronaVeronaItaly
  3. 3.Department of Biomedical Sciences, Division of Neuroscience and Clinical PharmacologyUniversity of Cagliari, Cittadella Universitaria di MonserratoMonserratoItaly

Personalised recommendations