, Volume 235, Issue 2, pp 561–571 | Cite as

Progress and promise for the MDMA drug development program

  • Allison A. FeducciaEmail author
  • Julie Holland
  • Michael C. Mithoefer


Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug “Ecstasy.” MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.


3,4-Methylenedioxymethamphetamine PTSD Psychoactive effects MDMA 


  1. Amoroso T, Workman M (2016) Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: a preliminary meta-analysis and comparison to prolonged exposure therapy. J Psychopharmacol 30:595–600. CrossRefPubMedGoogle Scholar
  2. Bedi G, Hyman D, de Wit H (2010) Is ecstasy an "empathogen"? Effects of +/−3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol Psychiatry 68:1134–1140. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bedi G, Phan KL, Angstadt M, de Wit H (2009) Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology 207:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bershad AK, Miller MA, Baggott MJ, de Wit H (2016a) The effects of MDMA on socio-emotional processing: does MDMA differ from other stimulants? J Psychopharmacol 30:1248–1258. CrossRefPubMedGoogle Scholar
  5. Bershad AK, Weafer JJ, Kirkpatrick MG, Wardle MC, Miller MA, de Wit H (2016b) Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc Neurosci 11:592–599. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bouso JC, Doblin R, Farre M, Alcazar MA, Gomez-Jarabo G (2008) MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder. J Psychoactive Drugs 40:225–236CrossRefPubMedGoogle Scholar
  7. Bradley R, Greene J, Russ E, Dutra L, Westen D (2005) A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry 162:214–227. CrossRefPubMedGoogle Scholar
  8. Brady K, Pearlstein T, Asnis GM, Baker D, Rothbaum B, Sikes CR (2000) Farfel GM. Efficacy and safety of sertraline treatment of posttraumatic stress disorder: a randomized controlled trial JAMA 283:1837–1844PubMedGoogle Scholar
  9. Carhart-Harris RL et al (2015) The effects of acutely administered 3,4-methylenedioxymethamphetamine on spontaneous brain function in healthy volunteers measured with arterial spin labeling and blood oxygen level-dependent resting state functional connectivity. Biol Psychiatry 78:554–562. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carhart-Harris RL et al (2014) The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories. Int J Neuropsychopharmacol 17:527–540. CrossRefPubMedGoogle Scholar
  11. Carter CS (1992) Oxytocin and sexual behavior. Neurosci Biobehav Rev 16:131–144CrossRefPubMedGoogle Scholar
  12. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265CrossRefPubMedGoogle Scholar
  13. Clark CM, Frye CG, Wardle MC, Norman GJ, de Wit H (2015) Acute effects of MDMA on autonomic cardiac activity and their relation to subjective prosocial and stimulant effects. Psychophysiology 52:429–435. CrossRefPubMedGoogle Scholar
  14. Cohen DB (2015) Countering the dynamics of dominance: how therapists create safety through egalitarianism in MDMA-assisted psychotherapy for women veterans with complex posttraumatic stress disorder. Dissertation, California Institute of Integral StudiesGoogle Scholar
  15. D’Andrea W, Ford J, Stolbach B, Spinazzola J, van der Kolk BA (2012) Understanding interpersonal trauma in children: why we need a developmentally appropriate trauma diagnosis. Am J Orthop 82:187–200. CrossRefGoogle Scholar
  16. Danforth A (2013) Findings from a collective case study of the MDMA/ecstasy experiences of adults on the autism spectrum: transcripts from psychedelic science 2013 MAPS. Bulletin 23:30–35Google Scholar
  17. Danforth AL, Struble CM, Yazar-Klosinski B, Grob CS (2015) MDMA-assisted therapy: a new treatment model for social anxiety in autistic adults Prog Neuropsychopharmacol Biol Psychiatry doi:
  18. Davidson RJ et al (2002) Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry 52:478–502CrossRefPubMedGoogle Scholar
  19. de la Torre R et al (2000) Pharmacology of MDMA in humans. Ann N Y Acad Sci 914:225–237CrossRefPubMedGoogle Scholar
  20. de la Torre R, Yubero-Lahoz S, Pardo-Lozano R, Farre M (2012) MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant? Front Genet 3:235. PubMedPubMedCentralGoogle Scholar
  21. Dolder PC, Muller F, Schmid Y, Borgwardt SJ, Liechti ME (2017) Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects Psychopharmacology (Berl) doi:
  22. Dumont GJ et al (2009) Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci 4:359–366CrossRefPubMedGoogle Scholar
  23. Eckstein M et al (2015) Oxytocin facilitates the extinction of conditioned fear in humans. Biol Psychiatry 78:194–202. CrossRefPubMedGoogle Scholar
  24. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Feduccia AA, Duvauchelle CL (2008) Auditory stimuli enhance MDMA-conditioned reward and MDMA-induced nucleus accumbens dopamine, serotonin and locomotor responses. Brain Res Bull 77:189–196. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Feduccia AA, Yazar-Klosinski B, Jerome L, Mithoefer MC, Emerson A, Doblin R (2016) MDMA-assisted Psychotherapy for Treatment of Chronic PTSD: Findings from MAPS-Sponsored Phase 2 Clinical Research Trials. Paper presented at the The 46th Annual Meeting of the Society for Neuroscience, San Diego, CaliforniaGoogle Scholar
  27. Ferrier BM, Kennett DJ, Devlin MC (1980) Influence of oxytocin on human memory processes. Life Sci 27:2311–2317CrossRefPubMedGoogle Scholar
  28. Foa EB, Keane TM, Friedman MJ, Cohen JA (2009) Effective treatments for PTSD: practice guidelines from the International Society for Traumatic Stress Studies vol, 2nd edn. Guilford Press, New YorkGoogle Scholar
  29. Ford JD, Grasso D, Greene C, Levine J, Spinazzola J, van der Kolk B (2013) Clinical significance of a proposed developmental trauma disorder diagnosis: results of an international survey of clinicians. J Clin Psychiatry 74:841–849. CrossRefPubMedGoogle Scholar
  30. Freudenmann RW, Oxler F, Bernschneider-Reif S (2006) The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents. Addiction 101:1241–1245CrossRefPubMedGoogle Scholar
  31. Frith CH, Chang LW, Lattin DL, Walls RC, Hamm J, Doblin R (1987) Toxicity of methylenedioxymethamphetamine (MDMA) in the dog and the rat. Fundam Appl Toxicol 9:110–119CrossRefPubMedGoogle Scholar
  32. Gamma A, Buck A, Berthold T, Liechti ME, Vollenweider FX (2000) 3,4-Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H(2)(15)O]-PET in healthy humans. Neuropsychopharmacology 23:388–395CrossRefPubMedGoogle Scholar
  33. GlaxoSmithKline (2001) New Drug Application (NDA 20–031/S-029) Paxil (Paroxetine Hydrochloride) Tablets vol Posttraumatic Stress Disorder Volume 1Google Scholar
  34. Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in a clinical setting. J Psychoactive Drugs 18:319–327CrossRefPubMedGoogle Scholar
  35. Grob C (1998) MDMA research: preliminary investigations with human subjects. Int J Drug Policy 9:119–124CrossRefGoogle Scholar
  36. Grob CS, Poland RE, Chang L, Ernst T (1996) Psychobiologic effects of 3,4-methylenedioxymethamphetamine in humans: methodological considerations and preliminary observations. Behav Brain Res 73:103–107CrossRefPubMedGoogle Scholar
  37. Guastella AJ, Mitchell PB, Mathews F (2008) Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 64:256–258. CrossRefPubMedGoogle Scholar
  38. Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535. CrossRefPubMedGoogle Scholar
  39. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6CrossRefPubMedPubMedCentralGoogle Scholar
  40. Healy D, Whitaker C (2003) Antidepressants and suicide: risk-benefit conundrums. J Psychiatry Neurosci 28:331–337PubMedPubMedCentralGoogle Scholar
  41. Heinrichs M, Meinlschmidt G, Wippich W, Ehlert U, Hellhammer DH (2004) Selective amnesic effects of oxytocin on human memory. Physiol Behav 83:31–38. CrossRefPubMedGoogle Scholar
  42. Hurlemann R et al (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30:4999–5007. CrossRefPubMedGoogle Scholar
  43. Hysek CM, Domes G, Liechti ME (2012a) MDMA enhances "mind reading" of positive emotions and impairs "mind reading" of negative emotions. Psychopharmacology 222:293–302. CrossRefPubMedGoogle Scholar
  44. Hysek CM et al (2014a) MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci 9:1645–1652. CrossRefPubMedGoogle Scholar
  45. Hysek CM et al (2012b) Duloxetine inhibits effects of MDMA ("ecstasy") in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 7:e36476. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hysek CM et al (2014b) Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 17:371–381. CrossRefPubMedGoogle Scholar
  47. Insel TR (1992) Oxytocin—a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17:3–35CrossRefPubMedGoogle Scholar
  48. Jerome L, Schuster S, Yazar-Klosinski BB (2013) Can MDMA play a role in the treatment of substance abuse? Curr Drug Abuse Rev 6:54–62 CrossRefPubMedGoogle Scholar
  49. Kamilar-Britt P, Bedi G (2015) The prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA): controlled studies in humans and laboratory animals. Neurosci Biobehav Rev 57:433–446. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kirkpatrick MG, Baggott MJ, Mendelson JE, Galloway GP, Liechti ME, Hysek CM, de Wit H (2014a) MDMA effects consistent across laboratories. Psychopharmacology 231:3899–3905. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kirkpatrick MG, Francis SM, Lee R, de Wit H, Jacob S (2014b) Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology 46:23–31. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kirkpatrick MG, Lee R, Wardle MC, Jacob S, de Wit H (2014c) Effects of MDMA and intranasal oxytocin on social and emotional processing. Neuropsychopharmacology 39:1654–1663. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kuypers KP, de la Torre R, Farre M, Yubero-Lahoz S, Dziobek I, Van den Bos W, Ramaekers JG (2014) No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS One 9:e100719. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuypers KP, Dolder PC, Ramaekers JG, Liechti ME (2017) Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies J Psychopharmacol:269881117699617 doi:
  55. Liang KC, Juler RG, McGaugh JL (1986) Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res 368:125–133CrossRefPubMedGoogle Scholar
  56. Liechti ME, Gamma A, Vollenweider FX (2001) Gender differences in the subjective effects of MDMA. Psychopharmacology 154:161–168CrossRefPubMedGoogle Scholar
  57. Liechti ME, Vollenweider FX (2000) The serotonin uptake inhibitor citalopram reduces acute cardiovascular and vegetative effects of 3,4-methylenedioxymethamphetamine ('Ecstasy') in healthy volunteers. J Psychopharmacol 14:269–274CrossRefPubMedGoogle Scholar
  58. Lu B, Chang JH (2004) Regulation of neurogenesis by neurotrophins: implications in hippocampus-dependent memory. Neuron Glia Biol 1:377–384. CrossRefPubMedGoogle Scholar
  59. Mas M, Farre M, de la Torre R, Roset PN, Ortuno J, Segura J, Cami J (1999) Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 290:136–145PubMedGoogle Scholar
  60. Meyer ML, Masten CL, Ma Y, Wang C, Shi Z, Eisenberger NI, Han S (2013) Empathy for the social suffering of friends and strangers recruits distinct patterns of brain activation. Soc Cogn Affect Neurosci 8:446–454. CrossRefPubMedGoogle Scholar
  61. Mithoefer M MDMA-assisted psychotherapy; promising treatment for PTSD In: American Psychiatric Association Annual Meeting, Toronto, ON, 2015Google Scholar
  62. Mithoefer M (2017) A Manual for MDMA-Assisted Psychotherapy in the Treatment of Posttraumatic Stress Disorder; Version 8.1.
  63. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/−}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mithoefer MC et al (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol 27:28–39. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mowry JB, Spyker DA, Brooks DE, Zimmerman A, Schauben JL (2016) 2015 annual report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 33rd annual report. Clin Toxicol (Phila) 54:924–1109. CrossRefGoogle Scholar
  66. Murnane KS, Fantegrossi WE, Godfrey JR, Banks ML, Howell LL (2010) Endocrine and neurochemical effects of 3,4-methylenedioxymethamphetamine and its stereoisomers in rhesus monkeys. J Pharmacol Exp Ther 334:642–650. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Musser ED, Kaiser-Laurent H, Ablow JC (2012) The neural correlates of maternal sensitivity: an fMRI study. Dev Cogn Neurosci 2:428–436. CrossRefPubMedGoogle Scholar
  68. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547CrossRefPubMedGoogle Scholar
  69. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313CrossRefPubMedGoogle Scholar
  70. Oehen P, Traber R, Widmer V, Schnyder U (2013) A randomized, controlled pilot study of MDMA (+/− 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). J Psychopharmacol 27:40–52. CrossRefPubMedGoogle Scholar
  71. Peiro AM et al (2013) Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 2 h apart. Psychopharmacology 225:883–893. CrossRefPubMedGoogle Scholar
  72. Pfizer (1999) New Drug Application Zoloft (sertraline)Google Scholar
  73. Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 60:376–382CrossRefPubMedGoogle Scholar
  74. Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2002) Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA ("ecstasy"). Science 297:2260–2263. CrossRefPubMedGoogle Scholar
  75. Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2003) Retraction. Science 301:1479CrossRefPubMedGoogle Scholar
  76. Rimmele U, Hediger K, Heinrichs M, Klaver P (2009) Oxytocin makes a face in memory familiar. J Neurosci 29:38–42. CrossRefPubMedGoogle Scholar
  77. Roozendaal B, Okuda S, Van der Zee EA, McGaugh JL (2006) Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 103:6741–6746. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Savaskan E, Ehrhardt R, Schulz A, Walter M, Schachinger H (2008) Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33:368–374. CrossRefPubMedGoogle Scholar
  79. Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME (2014) Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol 28:847–856. CrossRefPubMedGoogle Scholar
  80. Schmid Y, Vizeli P, Hysek CM, Prestin K, Meyer Z, Schwabedissen HE, Liechti ME (2016) CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals. Pharmacogenet Genomics 26:397–401. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Seibert J, Hysek CM, Penno CA, Schmid Y, Kratschmar DV, Liechti ME, Odermatt A (2014) Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects. Neuroendocrinology 100:17–25. CrossRefPubMedGoogle Scholar
  82. Shalev AY, Ankri Y, Gilad M, Israeli-Shalev Y, Adessky R, Qian M, Freedman S (2016) Long-term outcome of early interventions to prevent posttraumatic stress disorder. J Clin Psychiatry 77:e580–e587. CrossRefPubMedGoogle Scholar
  83. Shulgin AT, Nichols DE (1978) Characterization of three new psychotomimetics. In: Stillman RC, Willette RE (eds) The pharmacology of hallucinogens. Pergamon, New YorkGoogle Scholar
  84. Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, Liberzon I (2012) Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci 37:241–249. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Steenkamp MM, Litz BT, Hoge CW, Marmar CR (2015) Psychotherapy for military-related PTSD: a review of randomized clinical trials. JAMA 314:489–500. CrossRefPubMedGoogle Scholar
  86. Stolaroff M (2004) The secret chief revealed: conversations with a pioneer of the underground therapy movement. Multidisciplinary Association for Psychedelic Studies, Sarasota FLGoogle Scholar
  87. Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598CrossRefPubMedGoogle Scholar
  88. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (2007) A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy"). Neuroscience 146:509–514CrossRefPubMedGoogle Scholar
  89. van der Kolk BA (2009) Developmental trauma disorder: towards a rational diagnosis for chronically traumatized children. Prax Kinderpsychol Kinderpsychiatr 58:572–586.  10.13109/prkk.2009.58.8.572 CrossRefPubMedGoogle Scholar
  90. van Wel JH, Kuypers KP, Theunissen EL, Bosker WM, Bakker K, Ramaekers JG (2012) Effects of acute MDMA intoxication on mood and impulsivity: role of the 5-HT(2) and 5-HT(1) receptors. PLoS One 7:e40187. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Verrico CD, Miller GM, Madras BK (2007) MDMA (ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189:489–503CrossRefPubMedGoogle Scholar
  92. Vizeli P, Liechti ME (2017) Safety pharmacology of acute MDMA administration in healthy subjects J Psychopharmacol:269881117691569 doi:
  93. Wagner AC (2017) (2017) combining cognitive behavioral conjoint therapy for PTSD and MDMA - first cases and understanding the MDMA experience from a cognitive behavioral framework. In: psychedelic science 2017. In: OaklandGoogle Scholar
  94. Witt DM (1995) Oxytocin and rodent sociosexual responses: from behavior to gene expression. Neurosci Biobehav Rev 19:315–324CrossRefPubMedGoogle Scholar
  95. Wolfson P (2015) Return to ADAM: reflections on MDMA-assisted psychotherapy 30 years later. MAPS Bulletin, Vol 25(3).
  96. Yazar-Klosinski BB, Mithoefer MC (2017) Potential psychiatric uses for MDMA. Clin Pharmacol Ther 101:194–196. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yehuda R, Spiegel D, Southwick S, Davis LL, Neylan TC, Krystal JH (2016) What I have changed my mind about and why. Eur J Psychotraumatol 7:33768. CrossRefPubMedGoogle Scholar
  98. Young MB, Andero R, Ressler KJ, Howell LL (2015) 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl Psychiatry 5:e634. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Young MB et al. (2017) Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA) psychopharmacology (Berl) doi:
  100. Yubero-Lahoz S et al. (2012) Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug Drug Metab Pharmacokinet 27:605–613 doi:DN/JST.JSTAGE/dmpk/DMPK-12-RG-032 [pii]Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Allison A. Feduccia
    • 1
    Email author
  • Julie Holland
    • 2
  • Michael C. Mithoefer
    • 3
  1. 1.MAPS Public Benefit CorporationSanta CruzUSA
  2. 2.Private PracticeNew YorkUSA
  3. 3.Medical University of South CarolinaCharlestonUSA

Personalised recommendations