Anderson KG, Diller JW (2010) Effects of acute and repeated nicotine administration on delay discounting in Lewis and Fischer 344 rats. Behav Pharmacol 21:754–764. https://doi.org/10.1097/FBP.0b013e328340a050
CAS
Article
PubMed
PubMed Central
Google Scholar
Anderson KG, Woolverton WL (2005) Effects of clomipramine on self-control choice in Lewis and Fischer 344 rats. Pharmacol Biochem Behav 80:387–393. https://doi.org/10.1016/j.pbb.2004.11.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Barlow P, McKee M, Reeves A, Galea G, Stuckler D (2016) Time-discounting and tobacco smoking: a systematic review and network analysis. Int J Epidemiol. https://doi.org/10.1093/ije/dyw233
Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742
CAS
Article
PubMed
PubMed Central
Google Scholar
Cadoni C (2016) Fischer 344 and Lewis rat strains as a model of genetic vulnerability to drug addiction. Front Neurosci 10:13. https://doi.org/10.3389/fnins.2016.00013
Article
PubMed
PubMed Central
Google Scholar
Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170
CAS
Article
PubMed
Google Scholar
Falsafi SK, Deli A, Hoger H, Pollak A, Lubec G (2012) Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS One 7(2):e32082
CAS
Article
PubMed
PubMed Central
Google Scholar
Flores G, Wood GK, Barbeau D, Quirion R, Srivastava LK (1998) Lewis and Fischer rats: a comparison of dopamine transporter and receptors levels. Brain Res 814:34–40
CAS
Article
PubMed
Google Scholar
Hamilton KR, Potenza MN (2012) Relations among delay discounting, addictions, and money mismanagement: implications and future directions. Am J Drug Alcohol Abuse 38:30–42. https://doi.org/10.3109/00952990.2011.643978
Article
PubMed
PubMed Central
Google Scholar
Huskinson SL, Anderson KG (2012) Effects of acute and chronic administration of diazepam on delay discounting in Lewis and Fischer 344 rats. Behav Pharmacol 23:315–330. https://doi.org/10.1097/FBP.0b013e3283564da4
CAS
Article
PubMed
Google Scholar
Huskinson SL, Krebs CA, Anderson KG (2012) Strain differences in delay discounting between Lewis and Fischer 344 rats as baseline and following acute and chronic administration of d-amphetamine. Pharmacol Biochem Behav 101:403–416. https://doi.org/10.1016/j.pbb.2012.02.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Kolokotroni KZ, Rodgers RJ, Harrison AA (2011) Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology 217:455–473. https://doi.org/10.1007/s00213-011-2296-2
CAS
Article
PubMed
Google Scholar
Liu X, Palmatier MI, Caggiula AR, Donny EC, Sved AF (2007) Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats. Psychopharmacology 194:463–473
CAS
Article
PubMed
PubMed Central
Google Scholar
Locey ML, Dallery J (2009) Isolating behavioral mechanisms of intertemporal choice: nicotine effects on delay discounting and amount sensitivity. J Exp Anal Behav 91:213–223. https://doi.org/10.1901/jeab.2009.91-213
Article
PubMed
PubMed Central
Google Scholar
Madden GJ, Smith NG, Brewer AT, Pinkston JW, Johnson PS (2008) Steady-state assessment of impulsive choice in Lewis and Fischer 344 rats: between-condition delay manipulations. J Exp Anal Behav 90(3):333–344
Article
PubMed
PubMed Central
Google Scholar
Mazur JE (1987) An adjusting amount procedure for studying delayed reinforcement. In: Commons ML, Mazur JE, Nevin JA, Rachlin H (eds) Quantitative analysis of behavior: the effects of delay and of intervening events on reinforcement value. Erlbaum, Hillsdale, pp 55–73
Google Scholar
Mendez IA, Gilbert RJ, Bizon JL, Setlow B (2012) Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats. Psychopharmacology 224:489–499. https://doi.org/10.1007/s00213-012-2777-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Mobini S, Chiang TJ, Al-Ruwaitea AS, Ho MY, Bradshaw CM, Szabadi E (2000) Effect of central 5-hydroxytryptamine depletion on inter-temporal choice: a quantitative analysis. Psychopharmacology 149:313–318
CAS
Article
PubMed
Google Scholar
Myerson J, Green L, Warusawitharana M (2001) Area under the curve as a measure of discounting. J Exp Anal Behav 76:235–243. https://doi.org/10.1901/jeab.2001.76-235
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmeller T, Sporer F, Sauerwein M, Wink M (1995) Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 50:493–195
CAS
PubMed
Google Scholar
Selim M, Bradberry CW (1996) Effect of ethanol on extracellular 5-HT and glutamate in the nucleus accumbens and prefrontal cortex: comparison between the Lewis and Fischer 344 rat strains. Brain Res 716:157–164. https://doi.org/10.1016/0006-8993(95)01385-7
CAS
Article
PubMed
Google Scholar
Stein JS, Pinkston JW, Brewer AT, Francisco MT, Madden GJ (2012) Delay discounting in Lewis and Fischer 344 rats: steady-state and rapid-determination adjusting-amount procedures. J Exp Anal Behav 97(3):305–321. https://doi.org/10.1901/jeab.2012.97-305
Article
PubMed
PubMed Central
Google Scholar
Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759
CAS
Article
PubMed
Google Scholar
U.S. Department of Health and Human Services (2014) The health consequences of smoking—50 years of progress: a report of the Surgeon General. Altanta, GA: U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health
van der Zee EA, Streefland C, Strosberg AD, Schroder H, Luiten PG (1991) Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res 542:348–352
Article
PubMed
Google Scholar
Varanda WA, Aracava Y, Sherby SM et al (1985) The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Mol Pharmacol 28:128–137
CAS
PubMed
Google Scholar
Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2003) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on delay-discounting task in rats. Psychopharmacology 170:320–331. https://doi.org/10.1007/s00213-003-1546-3
CAS
Article
PubMed
Google Scholar
Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114. https://doi.org/10.1093/cercor/bhi088
Article
PubMed
Google Scholar
Xie X, Arguello AA, Reittinger AM, Wells AM, Fuchs RA (2012) Role of nicotinic acetylcholine receptors in the effects of cocaine-paired contextual stimuli on impulsive decision making in rats. Psychopharmacology 223:271–279. https://doi.org/10.1007/s00213-012-2715-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Bardo MT, Green TA, Wedlund PJ, Dwoskin LP (2007) Nicotine increases dopamine clearance in medial prefrontal cortex in rats raised in an enriched environment. J Neurochem 103:2575–2588. https://doi.org/10.1111/j.1471-4159.2007.04951.x
CAS
Article
PubMed
Google Scholar