Skip to main content
Log in

Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Brexpiprazole, a serotonin–dopamine activity modulator, is approved in the USA as an adjunctive therapy to antidepressants for treating major depressive disorders. Similar to the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, the combination of brexpiprazole and fluoxetine has demonstrated antidepressant-like effects in animal models of depression.

Objectives

The present study was conducted to examine whether the combination of brexpiprazole and fluoxetine could affect the tissue levels of amino acids [glutamate, glutamine, γ-aminobutyric acid (GABA), D-serine, L-serine, and glycine] that are associated with NMDAR neurotransmission.

Methods

The tissue levels of amino acids in the frontal cortex, striatum, hippocampus, and cerebellum were measured after a single [or repeated (14 days)] oral administration of vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or a combination of the two drugs. Furthermore, we measured the tissue levels of amino acids after a single administration of the NMDAR antagonist (R)-ketamine.

Results

A single injection of the combination of fluoxetine and brexpiprazole significantly increased GABA levels in the striatum, the D-serine/L-serine ratio in the frontal cortex, and the glycine/L-serine ratio in the hippocampus. A repeated administration of the combination significantly altered the tissue levels of amino acids in all regions. Interestingly, a repeated administration of the combination significantly decreased the D-serine/L-serine ratio in the frontal cortex, striatum, and hippocampus. In contrast, a single administration of (R)-ketamine significantly increased the D-serine/L-serine ratio in the frontal cortex.

Conclusions

These results suggested that alterations in the tissue levels of these amino acids may be involved in the antidepressant-like effects of the combination of brexpiprazole and fluoxetine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baldaçara L, Borgio JG, Lacerda AL, Jackowski AP (2008) Cerebellum and psychiatric disorders. Rev Bras Psiquiatr 30:281–289

    Article  PubMed  Google Scholar 

  • Barbee JG, Conrad EJ, Jamhour NJ (2004) The effectiveness of olanzapine, risperidone, quetiapine, and ziprasidone as augmentation agents in treatment-resistant major depressive disorder. J Clin Psychiatry 65:975–981

    Article  PubMed  CAS  Google Scholar 

  • Beyer JL, Weisler RH (2016) Adjunctive brexpiprazole for the treatment of major depressive disorder. Expert Opin Pharmacother 17:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Björkholm C, Marcus MM, Konradsson-Geuken Å, Jardemark K, Svensson TH (2017) The novel antipsychotic drug brexpiprazole, alone and in combination with escitalopram, facilitates prefrontal glutamatergic transmission via a dopamine D1 receptor-dependent mechanism. Eur Neuropsychopharmacol 27:411–417

    Article  PubMed  CAS  Google Scholar 

  • Brunner E, Tohen M, Osuntokun O, Landry J, Thase ME (2014) Efficacy and safety of olanzapine/fluoxetine combination vs fluoxetine mono-therapy following successful combination therapy of treatment-resistant major depressive disorder. Neuropsychopharmacology 39:2549–2559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Citrome L (2015) Brexpiprazole: a new dopamine D2 receptor partial agonist for the treatment of schizophrenia and major depressive disorder. Drugs Today (Barc) 51:397–414

    Article  CAS  Google Scholar 

  • Citrome L (2017) Activating and sedating adverse effects of second-generation antipsychotics in the treatment of schizophrenia and major depressive disorder: absolute risk increase and number needed to harm. J Clin Psychopharmacol 37:138–147

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Ishima T, Hashimoto K (2016) Supplementation with D-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation. Sci Rep 6:37261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi JI, Hashimoto K, Chaki S (2017) Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther 361:9–16

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2014a) Blood D-serine levels as a predictive biomarker for the rapid antidepressant effects of the NMDA receptor antagonist ketamine. Psychopharmacology 231:4081–4082

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2014b) Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 18:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2016a) R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol Med 46:2449–2451

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2016b) Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets 20:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2017) Chapter 4. Rapid antidepressant activity of ketamine beyond NMDA receptor. In: Hashimoto K (ed) The NMDA receptors. Humana Press, New York, pp 69–81

    Chapter  Google Scholar 

  • Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377

    Article  PubMed  Google Scholar 

  • Hashimoto K, Bruno D, Nierenberg J, Marmar CR, Zetterberg H, Blonnow K, Pomara N (2016a) Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: 3-year follow-up study. Transl Psychiatry 6:e744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K, Yoshida T, Ishikawa M, Fujita Y, Niitsu T, Nakazato M, Watanabe H, Sasaki T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M (2016b) Increased serum levels of serine enantiomers in patients with depression. Acta Neuropsychiatr 28:173–178

    Article  PubMed  Google Scholar 

  • Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of D-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59:853–859

    Article  PubMed  CAS  Google Scholar 

  • Ishima T, Futamura T, Ohgi Y, Yoshimi N, Kikuchi T, Hashimoto K (2015) Potentiation of neurite outgrowth by brexpiprazole, a novel serotonin-dopamine activity modulator: a role for serotonin 5-HT1A and 5-HT2A receptors. Eur Neuropsychopharmacol 25:505–511

    Article  PubMed  CAS  Google Scholar 

  • Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH (2005) Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci 30:178–186

    PubMed  PubMed Central  Google Scholar 

  • Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2016) Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: role of BDNF-TrkB signaling. Sci Rep 6:39209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2017) Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology 234:525–533

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Sugino H, Akazawa H, Amada N, Shimada J, Futamura T, Yamashita H, Ito N, McQuade RD, Mørk A, Pehrson AL, Hentzer M, Nielsen V, Bundgaard C, Arnt J, Stensbøl TB, Kikuchi T (2014a) Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 350:589–604

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Lerdrup L, Sugino H, Akazawa H, Amada N, McQuade RD, Stensbøl TB, Bundgaard C, Arnt J, Kikuchi T (2014b) Brexpiprazole II: antipsychotic-like and procognitive effects of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 350:605–614

    Article  PubMed  CAS  Google Scholar 

  • Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine. Acta Neuropsychiar 27:15–167

    Google Scholar 

  • McKeage K (2016) Adjunctive brexpiprazole: a review in major depressive disorder. CNS Drugs 30:91–99

    Article  PubMed  CAS  Google Scholar 

  • Moaddel R, Luckenbaugh DA, Xie Y, Villaseñor A, Brutsche NE, Machado-Vieira R, Ramamoorthy A, Lorenzo MP, Garcia A, Bernier M, Torjman MC, Barbas C, Zarate CA Jr, Wainer IW (2015) D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology 232:399–409

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Papakostas GI (2009) Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am J Psychiatry 166:980–991

    Article  PubMed  Google Scholar 

  • Ozaki N, Otsubo T, Kato M, Higuchi T, Ono H, Kamijima K, ADMIRE Study Group (2015) Efficacy of aripiprazole augmentation in Japanese patients with major depressive disorder: a subgroup analysis and Montgomery-Åsberg depression rating scale and Hamilton rating scale for depression item analyses of the aripiprazole depression multicenter efficacy study. Psychiatry Clin Neurosci 69:34–42

    Article  PubMed  CAS  Google Scholar 

  • Papakostas GI, Petersen TJ, Kinrys G, Burns AM, Worthington JJ, Alpert JE, Fava M, Nierenberg AA (2005) Aripiprazole augmentation of selective serotonin reuptake inhibitors for treatment-resistant major depressive disorder. J Clin Psychiatry 66:1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Papakostas GI, Shelton RC, Smith J, Fava M (2007) Augmentation of antidepressants with atypical antipsychotic medications for treatment-resistant major depressive disorder: a meta-analysis. J Clin Psychiatry 68:826–831

    Article  PubMed  CAS  Google Scholar 

  • Papakostas GI, Fava M, Baer L, Swee MB, Jaeger A, Bobo WV, Shelton RC (2015) Ziprasidone augmentation of escitalopram for major depressive disorder: efficacy results from a randomized, double-blind, placebo-controlled study. Am J Psychiatry 172:1251–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogóz Z (2013) Combined treatment with atypical antipsychotics and antidepressants in treatment-resistant depression: preclinical and clinical efficacy. Pharmacol Rep 65:1536–1544

    Google Scholar 

  • Schell MJ (2004) The N-methyl-D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond Ser B Biol Sci 359:943–964

    Article  CAS  Google Scholar 

  • Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum 6:254–267

    Article  PubMed  Google Scholar 

  • Shelton RC, Papakostas GI (2008) Augmentation of antidepressants with atypical antipsychotics for treatment-resistant major depressive disorder. Acta Psychiatr Scand 117:253–259

    Article  PubMed  CAS  Google Scholar 

  • Singh NS, Bernier M, Camandola S, Khadeer MA, Moaddel R, Mattson MP, Wainer IW (2015) Enantioselective inhibition of D-serine transport by (S)-ketamine. Bri J Pharmacol 172:4546–4559

    Article  CAS  Google Scholar 

  • Singh NS, Rutkowska E, Plazinska A, Khadeer M, Moaddel R, Jozwiak K, Bernier M, Wainer IW (2016) Ketamine metabolites enantioselectively decrease intracellular D-serine concentrations in PC-12 cells. PLoS One 11:e0149499

  • Stahl SM (2016) Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectr 21:1–6

    Article  PubMed  Google Scholar 

  • Sussman M, Yu J, Kamat SA, Hartry A, Legacy S, Duffy R, Aigbogun MS (2017) Cost-effectiveness of brexpiprazole adjunctive treatment for major depressive disorder. J Affect Disord 207:54–62

    Article  PubMed  Google Scholar 

  • Takeyama K, Yoshikawa M, Oka T, Kawaguchi M, Suzuki T, Hashimoto A (2006) Ketamine enhances the expression of serine racemase and D-amino acid oxidase mRNAs in rat brain. Eur J Pharmacol 540:82–86

    Article  PubMed  CAS  Google Scholar 

  • Thase ME, Youakim JM, Skuban A, Hobart M, Augustine C, Zhang P, McQuade RD, Carson WH, Nyilas M, Sanchez R, Eriksson H (2015a) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder: a phase 3, randomized, placebo-controlled study in patients with inadequate response to antidepressants. J Clin Psychiatry 76:1224–1231

    Article  PubMed  Google Scholar 

  • Thase ME, Youakim JM, Skuban A, Hobart M, Zhang P, McQuade RD, Nyilas M, Carson WH, Sanchez R, Eriksson H (2015b) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder: a phase 3, randomized, placebo-controlled study in patients with inadequate response to antidepressants. J Clin Psychiatry 76:1232–1240

    Article  PubMed  Google Scholar 

  • Tokita K, Fujita Y, Yamaji T, Hashimoto K (2012a) Depressive-like behavior in adrenocorticotropic hormone-treated rats blocked by memantine. Pharmacol Biochem Behav 102:329–334

    Article  PubMed  CAS  Google Scholar 

  • Tokita K, Yamaji T, Hashimoto K (2012b) Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 100:688–704

    Article  PubMed  CAS  Google Scholar 

  • Valentine GW, Sanacora G (2009) Targeting glial physiology and glutamate cycling in the treatment of depression. Biochem Pharmacol 78:431–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang B, Zhang JC, Han M, Yao W, Yang C, Ren Q, Ma M, Chen QX, Hashimoto K (2016) Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology 233:3647–3657

  • Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K (2017a) (R)-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 2016b. doi: 10.1016/j.biopsych.2016.12.020

  • Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, Hashimoto K (2017b) Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry. doi:10.1016/j.biopsych.2017.05.016

  • Yoon S, Jeon SW, Ko YH, Patker AA, Masand PS, Pae CU, Han C (2017) Adjunctive brexpiprazole as a novel effective strategy for treating major depressive disorder: a systematic review and meta-analysis. J Clin Psychopharmacol 37:46–53

    Article  PubMed  CAS  Google Scholar 

  • Yoshimi N, Fujita Y, Ohgi Y, Futamura T, Kikuchi T, Hashimoto K (2014) Effects of brexpiprazole, a novel serotonin-dopamine activity modulator, on phencyclidine-induced cognitive deficits in mice: a role for serotonin 5-HT1A receptors. Pharmacol Biochem Behav 124:245–249

    Article  PubMed  CAS  Google Scholar 

  • Yoshimi N, Futamura T, Hashimoto K (2015) Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator. Eur Neuropsychopharmacol 25:356–364

    Article  PubMed  CAS  Google Scholar 

  • Zhang JC, Li SX, Hashimoto K (2014) R(-)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  PubMed  CAS  Google Scholar 

  • Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Hashimoto K (2015) Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 232:4325–4335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan), and the Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and Development, AMED (to K.H.). Ms. Min Ma was supported by the Nurture of Creative Research Leaders in Immune System Regulation and Innovative Therapeutics Program of Chiba University. Dr. Qian Ren and Dr. Chun Yang were supported by Research Fellowship of the Japan Society for the Promotion of Science (Tokyo, Japan). Dr. Chao Dong was supported by the Uehara Research Foundation (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

The study was approved by the Animal Care and Use Committee of Chiba University Graduate School of Medicine.

Conflict of interest

Dr. Hashimoto is an inventor on a filed patent application on “The use of R-ketamine in the treatment of psychiatric diseases” by Chiba University. Dr. Hashimoto received research support from Dainippon-Sumitomo, Mochida, Otsuka, and Taisho. Dr. Ohgi and Dr. Futamura are employees of Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan). Other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Ren, Q., Fujita, Y. et al. Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine. Psychopharmacology 234, 3165–3173 (2017). https://doi.org/10.1007/s00213-017-4700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4700-z

Keywords

Navigation