Advertisement

Psychopharmacology

, Volume 234, Issue 7, pp 1165–1179 | Cite as

Novel 5-HT3 receptor antagonist QCM-4 attenuates depressive-like phenotype associated with obesity in high-fat-diet-fed mice

  • Yeshwant Kurhe
  • R. Mahesh
  • Thangaraj Devadoss
Original Investigation

Abstract

Rationale

Depression associated with obesity remains an interesting area to study the biological mechanisms and novel therapeutic intervention.

Objectives

The present study investigates the effect of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on several pathogenic markers of depression associated with obesity such as plasma insulin resistance, hippocampal cyclic adenosine monophosphate (cAMP), brain-derived neurotrophic factor (BDNF), serotonin (5-HT) concentrations, hippocampal neuronal damage, and p53 protein expression in high-fat-diet (HFD)-fed mice.

Methods

Obesity was experimentally induced in mice by feeding with HFD for 14 weeks followed by administration of QCM-4 (1 and 2 mg/kg, p.o.)/standard escitalopram (ESC) (10 mg/kg, p.o.)/vehicle (10 ml/kg, p.o.) for 28 days. Behavioral assays such as sucrose preference test (SPT); forced swim test (FST); elevated plus maze (EPM); biochemical assays including oral glucose tolerance tests (OGTT), insulin, cAMP, BDNF, and 5-HT concentrations; and molecular assays mainly histology and immunohistochemistry (IHC) of p53 protein in the dentate gyrus (DG), CA1, and CA3 regions of hippocampus in HFD fed mice were performed.

Results

Chronic treatment with QCM-4 in HFD-fed mice reversed the behavioral alterations in SPT, FST, and EPM. QCM-4 showed poor sensitivity for plasma glucose, improved insulin sensitivity, increased hippocampal cAMP, BDNF, and 5-HT concentrations. In the hippocampal DG, CA1, and CA3 regions, QCM-4 treatment improved the neuronal morphology in the histopathology and inhibited p53 protein expression in IHC assay in HFD-fed mice.

Conclusion

QCM-4 attenuated the depressive-like phenotype in HFD-fed mice by improving behavioral, biochemical, and molecular alterations through serotonergic neuromodulation.

Keywords

Depression Obesity Serotonin p53 BDNF 

Notes

Acknowledgments

The authors are thankful to Birla Institute of Technology and Science (BITS), Pilani, India, for providing the support and research facilities to pursue this work.

References

  1. Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I (2013) A histological and functional study on hippocampal formation of normal and diabetic rats. F1000 Research 2.Google Scholar
  2. André C, Dinel AL, Ferreira G, Layé S, Castanon N (2014) Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2, 3-dioxygenase activation. Brain Behav Immun 41:10–21CrossRefPubMedGoogle Scholar
  3. Awada R, Parimisetty A, d’Hellencourt CL (2013) Influence of obesity on neurodegenerative diseases. Neurodegener Dis. doi: 10.5772/53671
  4. Bétry C, Etiévant A, Oosterhof C, Ebert B, Sanchez C, Haddjeri N (2011) Role of 5-HT3 receptors in the antidepressant response. Pharmaceuticals 4:603–629CrossRefPubMedCentralGoogle Scholar
  5. Boissier JR, Simon P (1965) Action de la caféine sur la motilité spontanée de la souris. Ach Int Pharmacodyn Ther 158:212–221Google Scholar
  6. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245CrossRefPubMedGoogle Scholar
  7. Dobson KS (1985) An analysis of anxiety and depression scales. J Pers Assess 49:522–527CrossRefPubMedGoogle Scholar
  8. Ferres-Coy A, Pilar-Cuellar F, Vidal R, Paz V, Masana M, Cortes R, Carmona MC, Campa L, Pazos A, Montefeltro A, Valdizan EM, Artigas F, Bortolozzi A (2013) RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis. Transl Psychiatry 3:e211CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212–223CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523CrossRefPubMedGoogle Scholar
  11. Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, Gordon E, Kemp AH, Williams LM (2009) Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 4:681–695CrossRefGoogle Scholar
  12. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress Neurobiol 112:24–49CrossRefGoogle Scholar
  13. Goodnick PJ, Henry JH, Buki V (1995) Treatment of depression in patients with diabetes mellitus. J Clin Psychiatry 56:128–136PubMedGoogle Scholar
  14. Greenshaw AJ, Silverstone H (1997) The non-antiemetic uses of serotonin 5-HT3 receptor antagonists. Drugs 53:20–39CrossRefPubMedGoogle Scholar
  15. Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P et al (2007) Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J Biol Chem 282:2918–2928CrossRefPubMedGoogle Scholar
  16. Hannon TS, Li Z, Tu W, Huber JN, Carroll AE, Lagges AM, Gupta S (2014) Depressive symptoms are associated with fasting insulin resistance in obese youth. Pediatr Obes 9:e103–e107CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hogg S (1996) A review of the validity and variability of the elevated plus maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30CrossRefPubMedGoogle Scholar
  18. Horacek J, Kuzmiakova M, Hoschl C, Andel M, Bahbonh R (1999) The relationship between central serotonergic activity and insulin sensitivity in healthy volunteers. Psychoneuroendocrinology 24:785–797CrossRefPubMedGoogle Scholar
  19. Katona CL, Katona CP (2014) New generation multi-modal antidepressants: focus on vortioxetine for major depressive disorder. Neuropsychiatr Dis Treat 10:349–354CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kern S, Oakes TR, Stone CK, McAuliff EM, Kirschbaum C, Davidson RJ (2008) Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology 33:517–529CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kurhe Y, Radhakrishnan M, Gupta D, Thangaraj D (2014a) QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice. J Pharm Pharmacol 66:122–132CrossRefPubMedGoogle Scholar
  22. Kurhe Y, Mahesh R, Gupta D, Devadoss T (2014b) QCM-4, a serotonergic type 3 receptor modulator attenuates depression co-morbid with obesity in mice: an approach based on behavioral and biochemical investigations. Eur J Pharmacol 740:611–618CrossRefPubMedGoogle Scholar
  23. Kurhe Y, Mahesh R, Devadoss T (2015) QCM-4, a 5-HT3 receptor antagonist ameliorates plasma HPA axis hyperactivity, leptin resistance and brain oxidative stress in depression and anxiety-like behavior in obese mice. Biochem Biophys Res Commun 456:74–79CrossRefPubMedGoogle Scholar
  24. Lee MJ, Pramyothin P, Karastergiou K, Fried SK (2014) Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 1842:473–481CrossRefPubMedGoogle Scholar
  25. Liu X, Zhu Z, Kalyani M, Janik JM, Shi H (2014) Effects of energy status and diet on Bdnf expression in the ventromedial hypothalamus of male and female rats. Physiol Behav 130:99–107CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lucassen EA, Cizza G (2012) The hypothalamic-pituitary-adrenal axis, obesity, and chronic stress exposure: sleep and the HPA axis in obesity. Curr Obes Reports 1:208–215CrossRefGoogle Scholar
  27. Lundquist I, Ekholm R, Ericson LE (1971) Monoamines in the pancreatic islets of the mouse. 5-hydroxytryptamine as an intracellular modifier of insulin secretion, and the hypoglycaemic action of monoamine oxidase inhibitors. Diabetologia 7:414–422CrossRefPubMedGoogle Scholar
  28. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, Zitman FG (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arc Gen Psychiatry 67:220–229CrossRefGoogle Scholar
  29. Ma J, Xiao L (2010) Obesity and depression in US women: results from the 2005-2006 National Health and nutritional examination survey. Obesity (Silver Spring) 18:347–353CrossRefGoogle Scholar
  30. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192CrossRefPubMedGoogle Scholar
  31. Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26:631–638CrossRefPubMedGoogle Scholar
  32. Mällo T, Kõiv K, Koppel I, Raudkivi K, Uustare A, Rinken A, Timmusk T, Harro J (2008) Regulation of extracellular serotonin levels and brain-derived neurotrophic factor in rats with high and low exploratory activity. Brain Res 1194:110–117CrossRefPubMedPubMedCentralGoogle Scholar
  33. Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83CrossRefPubMedGoogle Scholar
  34. Mizunoya W, Ohnuki K, Baba K, Miyahara H, Shimizu N, Tabata K et al (2013) Effect of dietary fat type on anxiety-like and depression-like behavior in mice. Springerplus 2:165CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moore MC, Kimura K, Shibata H, Honjoh T, Saito M, Everett CA, Smith MS, Cherrington AD (2005) Portal 5-hydroxytryptophan infusion enhances glucose disposal in conscious dogs. Am J Physiol Endocrinol Metab 289:E225–E231CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mørk A, Pehrson L, Brennum LT, Nielsen SM, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sánchez C, Fischer CW, Liebenberg N, Wegener G, Bundgaard C, Hogg S, Bang-Andersen B, Stensbøl TB (2012) Pharmacological effects of LU AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340:666–675CrossRefPubMedGoogle Scholar
  37. Morrison RS, Kinoshita Y (2000) The role of p 53 in neuronal cell death. Cell Death Differ 7:868–879CrossRefPubMedGoogle Scholar
  38. Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C, Zhang YJ, Nestler EJ, Duman RS (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22:3673–3682PubMedGoogle Scholar
  39. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372PubMedGoogle Scholar
  40. Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295PubMedGoogle Scholar
  41. Pandey A, Goru SK, Kadakol A, Malek V, Gaikwad AB (2015) Differential regulation of angiotensin converting enzyme 2 and nuclear factor-κB by angiotensin II receptor subtypes in type 2 diabetic kidney. Biochimie 118:71–81CrossRefPubMedGoogle Scholar
  42. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink H, Rupnik M, Walter DJ (2009) Intracellular serotonin modulates insulin secretion from pancreatic β-cells by protein serotonylation. PLoS Biol 7:e1000229CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pearson S, Schmidt M, Patton G, Dwyer T, Blizzard L, Otahal P, Venn A (2010) Depression and insulin resistance cross-sectional associations in young adults. Diabetes Care 33:1128–1133CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pestell RG, Crock PA, Ward GM, Alford FP, Best JD (1989) Fenfluramine increases insulin action in patients with NIDDM. Diabetes Care 12:252–258CrossRefPubMedGoogle Scholar
  45. Porsolt RD (2000) Animal models of depression: utility for transgenic research. Rev Neurosci 11:53–58CrossRefPubMedGoogle Scholar
  46. Ramamoorthy R, Mahesh R, Borah M (2008) Anti-depressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behaviour Pharmacology 19:29–40CrossRefGoogle Scholar
  47. Rajkumar R, Mahesh R (2008) Assessing the neuronal serotonergic target based anti-depressant stratagem: impact of in vivo interaction studies and knockout models current. Neuropharmacology 6:215–234CrossRefGoogle Scholar
  48. Rajkumar R, Mahesh R (2010) Review: the auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol 24:455–469CrossRefPubMedGoogle Scholar
  49. Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Reviews 21:801–810CrossRefGoogle Scholar
  50. Rosgan NL, Carter MS, Elman S, Bauer M, Love M, Korenman SG (2002) Common treatment of polysystic ovary syndrome and major depressive disorder: case study and review. Curr Drug Targets Immune Endocr Metabol Disord 2:91–102Google Scholar
  51. Ryan JP, Sheu LK, Critchley HD, Gianaros PJ (2012) A neural circuitry linking insulin resistance to depressed mood. Psychosom Med 74:476–782CrossRefPubMedPubMedCentralGoogle Scholar
  52. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMedGoogle Scholar
  53. Scheen AJ, Paolisso G, Salvatore T, Lefèbvre PJ (1991) Improvement of insulin-induced glucose disposal in obese patients with NIDDM after 1-wk treatment with d-fenfluramine. Diabetes Care 14:325–332CrossRefPubMedGoogle Scholar
  54. Schweizer MC, Henniger MSH, Sillaber I (2009) Chronic mild stress (CMS) in mice: of anhedonia, anomalous anxiolysis and activity. PLoS One 4:e4326CrossRefPubMedPubMedCentralGoogle Scholar
  55. Scrable H, Burns-Cusato M, Medrano S (2009) Anxiety and the aging brain: stressed out over p53? Biochimica et Biophysica Acta (BBA)-General Subjects 1790:1587–1591CrossRefGoogle Scholar
  56. Sharma S, Fulton S (2012) Diet-induced obesity promotes depressive-like behavior that is associated with neural adaptations in brain reward circuitry. Int J Obes 37:382–389CrossRefGoogle Scholar
  57. Sonovane GS, Sarveiya VP, Kasture VS, Kasture SB (2002) Anxiolytic activity of Myristica fragrans seeds. Pharmacol Biochem Behavior 71:239–244CrossRefGoogle Scholar
  58. Spiers JG, Chen HJC, Sernia C, Lavidis NA (2014) Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:1–6Google Scholar
  59. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320CrossRefPubMedGoogle Scholar
  60. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017CrossRefPubMedGoogle Scholar
  61. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525CrossRefPubMedGoogle Scholar
  62. Walther DJ, Peter J-U, Winter S, Holtje M, Paulmann N et al (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862CrossRefPubMedGoogle Scholar
  63. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioral neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110CrossRefPubMedGoogle Scholar
  64. Wuwongse S, Chang RCC, Law AC (2010) The putative neurodegenerative links between depression and Alzheimer's disease. Prog Neurobiol 91:362–375CrossRefPubMedGoogle Scholar
  65. Xu Y, Jones JE, Lauzon DA, Anderson JG, Balthasar N et al (2010) A serotonin and melanocortin circuit mediates D-fenfluramine anorexia. J Neurosci 30:14630–14634Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PharmacyBirla Institute of Technology & Science, PilaniPilaniIndia
  2. 2.Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical University (IMU)Bukit JalilMalaysia

Personalised recommendations