, Volume 234, Issue 7, pp 1069–1077 | Cite as

Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine

  • Qiufang Bai
  • Dan Song
  • Li Gu
  • Alexei Verkhratsky
  • Liang PengEmail author
Original Investigation



Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence.


At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes.


Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.


Fluoxetine Cav-1 PTEN PI3K/AKT GSK-3β Glycogen 



This study was supported by Grant No. 31400925 to DS from the National Natural Science Foundation of China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Barley K, Dracheva S, Byne W (2009) Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112:54–64CrossRefPubMedGoogle Scholar
  2. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646CrossRefPubMedGoogle Scholar
  3. Bolo NR, Hodé Y, Nédélec JF, Lainé E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23:428–438CrossRefPubMedGoogle Scholar
  4. Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86:219–225CrossRefPubMedPubMedCentralGoogle Scholar
  5. Diniz BS, Talib LL, Joaquim HP, de Paula VR, Gattaz WF, Forlenza OV (2011) Platelet GSK3B activity in patients with late-life depression: marker of depressive episode severity and cognitive impairment? World J Biol Psychiatry 12:216–222CrossRefPubMedGoogle Scholar
  6. Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 97:11960–11965CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G, Steinman MQ, Alberini CM (2016) Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci U S A 113:8526–8531CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gibbs ME, Hertz L (2014) Serotonin mediation of early memory formation via 5-HT2B receptor-induced glycogenolysis in the day-old chick. Front Pharmacol 5:54CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gibbs ME, Hutchinson DS (2012) Rapid turnover of glycogen in memory formation. Neurochem Res 37:2456–2463Google Scholar
  11. Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223–1237PubMedGoogle Scholar
  12. Henry ME, Schmidt ME, Hennen J, Villafuerte RA, Butman ML, Tran P, Kerner LT, Cohen B, Renshaw PF (2005) A comparison of brain and serum pharmacokinetics of R-fluoxetine and racemic fluoxetine: a 19-F MRS study. Neuropsychopharmacology 30:1576–1583CrossRefPubMedGoogle Scholar
  13. Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215CrossRefPubMedGoogle Scholar
  14. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 603–661Google Scholar
  15. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310CrossRefPubMedGoogle Scholar
  16. Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14CrossRefPubMedGoogle Scholar
  17. Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2015) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 30:317–333CrossRefPubMedGoogle Scholar
  18. Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+,K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:3–89PubMedGoogle Scholar
  20. Joaquim HP, Talib LL, Forlenza OV, Diniz BS, Gattaz WF (2012) Long-term sertraline treatment increases expression and decreases phosphorylation of glycogen synthase kinase-3B in platelets of patients with late-life major depression. J Psychiatr Res 46:1053–1058CrossRefPubMedGoogle Scholar
  21. Karege F, Perroud N, Burkhardt S, Fernandez R, Ballmann E, La Harpe R, Malafosse A (2012) Protein levels of β-catenin and activation state of glycogen synthase kinase-3β in major depression. A study with postmortem prefrontal cortex J Affect Disord 136:185–188CrossRefPubMedGoogle Scholar
  22. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, ffrench-Mullen J, Turecki G (2009) Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 14:175–189CrossRefPubMedGoogle Scholar
  23. Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120CrossRefPubMedGoogle Scholar
  24. Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology 201:443–458CrossRefPubMedGoogle Scholar
  25. Liu S, Sun N, Xu Y, Yang C, Ren Y, Liu Z, Cao X, Sun Y, Xu Q, Zhang K, Shen Y (2012) Possible association of the GSK3β gene with the anxiety symptoms of major depressive disorder and P300 waveform. Genet Test Mol Biomarkers 16:1382–1389CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  27. McNally L, Bhagwagar Z, Hannestad J (2008) Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 13:501–510CrossRefPubMedGoogle Scholar
  28. Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15CrossRefGoogle Scholar
  29. O’Dowd BS, Barrington J, Ng KT, Hertz E, Hertz L (1995) Glycogenolytic response of primary chick and mouse cultures of astrocytes to noradrenaline across development. Brain Res Dev Brain Res 88:220–223CrossRefPubMedGoogle Scholar
  30. O’Dowd BS, Gibbs ME, Ng KT, Hertz E, Hertz L (1994) Astrocytic glycogenolysis energizes memory processes in neonate chicks. Brain Res Dev Brain Res 78:137–141CrossRefPubMedGoogle Scholar
  31. Peng L, Martin-vasallo P, Sweadner KJ (1997) Isoforms of Na, K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17:3488–3502PubMedGoogle Scholar
  32. Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN (2010) Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PLoS One 5:e8911CrossRefPubMedPubMedCentralGoogle Scholar
  33. Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN (2010) GSK3beta: role in therapeutic landscape and development of modulators. Br J Pharmacol 160:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pláteník J, Fišar Z, Buchal R, Jirák R, Kitzlerová E, Zvěřová M, Raboch J (2014) GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuro-Psychopharmacol Biol Psychiatry 50:83–93CrossRefGoogle Scholar
  35. Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact ofstress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236CrossRefPubMedPubMedCentralGoogle Scholar
  37. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138CrossRefPubMedGoogle Scholar
  38. Ren J, Song D, Bai Q, Verkhratsky A, Peng L (2015) Fluoxetine induces alkalinization of astroglial cytosol through stimulation of sodium-hydrogen exchanger 1: dissection of intracellular signaling pathways. Front Cell Neurosci 9:61PubMedPubMedCentralGoogle Scholar
  39. Robbins HL, Hague A (2016) The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol (Lausanne) 6:188Google Scholar
  40. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172–1179CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4:e6585CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shin T, Kim H, Jin JK, Moon C, Ahn M, Tanuma N, Matsumoto Y (2005) Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 165:11–20CrossRefPubMedGoogle Scholar
  43. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sowa G (2011) Novel insights into the role of caveolin-2 in cell- and tissue-specific signaling and function. Biochem Res Int 2011:809259CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stary CM, Tsutsumi YM, Patel PM, Head BP, Patel HH, Roth DM (2012) Caveolins: targeting pro-survival signaling in the heart and brain. Front Physiol 3:393CrossRefPubMedPubMedCentralGoogle Scholar
  46. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823CrossRefPubMedPubMedCentralGoogle Scholar
  47. Szymańska M, Suska A, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leśkiewicz M, Kubera M, Gergont A, Kroczka S, Kaciński M, Lasoń W (2009) Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex. Pharmacol Rep 61:612–620CrossRefPubMedGoogle Scholar
  48. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  49. Verkhratsky A, Rodríguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588CrossRefPubMedGoogle Scholar
  50. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152CrossRefPubMedGoogle Scholar
  51. Wang W, Gu L, Verkhratsky A, Peng L (2016) Ammonium increases TRPC1 expression via Cav-1/PTEN/AKT/GSK3β pathway. Neurochem Res. doi: 10.1007/s11064-016-2004-z Google Scholar
  52. Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J, Henke CA (2010) Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol 176:2626–2637CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485CrossRefPubMedGoogle Scholar
  54. Zhang K, Song X, Xu Y, Li X, Liu P, Sun N, Zhao X, Liu Z, Xie Z, Peng J (2013) Continuous GSK-3β overexpression in the hippocampal dentate gyrus induces prodepressant-like effects and increases sensitivity to chronic mild stress in mice. J Affect Disord 146:45–52CrossRefPubMedGoogle Scholar
  55. Zschocke J, Manthey D, Bayatti N, van der Burg B, Goodenough S, Behl C (2002) Estrogen receptor alpha-mediated silencing of caveolin gene expression in neuronal cells. J Biol Chem 277:38772–38780CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qiufang Bai
    • 1
  • Dan Song
    • 1
  • Li Gu
    • 1
  • Alexei Verkhratsky
    • 2
    • 3
  • Liang Peng
    • 1
    Email author
  1. 1.Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug DevelopmentChina Medical UniversityShenyangPeople’s Republic of China
  2. 2.Faculty of Life ScienceThe University of ManchesterManchesterUK
  3. 3.Achucarro Center for NeuroscienceIKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations