Skip to main content

Advertisement

Log in

Brexpiprazole reduces hyperactivity, impulsivity, and risk-preference behavior in mice with dopamine transporter knockdown—a model of mania

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Bipolar disorder (BD) is a unique mood disorder defined by periods of depression and mania. The defining diagnosis of BD is the presence of mania/hypomania, with symptoms including hyperactivity and risk-taking. Since current treatments do not ameliorate cognitive deficits such as risky decision-making, and impulsivity that can negatively affect a patient’s quality of life, better treatments are needed.

Objectives

Here, we tested whether acute treatment with brexpiprazole, a serotonin-dopamine activity modulator with partial agonist activity at D2/3 and 5-HT1A receptors, would attenuate the BD mania-relevant behaviors of the dopamine transporter (DAT) knockdown mouse model of mania.

Methods

The effects of brexpiprazole on DAT knockdown and wild-type littermate mice were examined in the behavioral pattern monitor (BPM) and Iowa gambling task (IGT) to quantify activity/exploration and impulsivity/risk-taking behavior respectively.

Results

DAT knockdown mice exhibited hyper-exploratory behavior in the BPM and made fewer safe choices in the IGT. Brexpiprazole attenuated the mania-like hyper-exploratory phenotype and increased safe choices in risk-preferring DAT knockdown mice. Brexpiprazole also reduced safe choices in safe-preferring mice irrespective of genotype. Finally, brexpiprazole reduced premature (impulsive-like) responses in both groups of mice.

Conclusions

Consistent with earlier reports, DAT knockdown mice exhibited hyper-exploratory, risk-preferring, and impulsive-like profiles consistent with patients with BD mania in these tasks. These behaviors were attenuated after brexpiprazole treatment. These data therefore indicate that brexpiprazole could be a novel treatment for BD mania and/or risk-taking/impulsivity disorders, since it remediates some relevant behavioral abnormalities in this mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IGT:

Iowa gambling task

DAT:

Dopamine transporter

BD:

Bipolar disorder

WT:

Wild type

KD:

Knockdown

BPM:

Behavioral pattern monitor

References

  • Adida M, Jollant F, Clark L, Besnier N, Guillaume S, Kaladjian A, Mazzola-Pomietto P, Jeanningros R, Goodwin GM, Azorin JM, Courtet P (2011) Trait-related decision-making impairment in the three phases of bipolar disorder. Biol Psychiatry 70:357–365

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, Fifth edn. American Psychiatric Association Publishing Fifth Edition, Washington DC

    Book  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15

    Article  CAS  PubMed  Google Scholar 

  • Belmaker RH, Bersudsky Y (2004) Bipolar disorder: mania and depression. Discov Med 4:239–245

    CAS  PubMed  Google Scholar 

  • Brambilla P, Perlini C, Bellani M, Tomelleri L, Ferro A, Cerruti S, Marinelli V, Rambaldelli G, Christodoulou T, Jogia J, Dima D, Tansella M, Balestrieri M, Frangou S (2013) Increased salience of gains versus decreased associative learning differentiate bipolar disorder from schizophrenia during incentive decision making. Psychol Med 43:571–580

    Article  CAS  PubMed  Google Scholar 

  • Cassidy F, Murry E, Forest K, Carroll BJ (1998) Signs and symptoms of mania in pure and mixed episodes. J Affect Disord 50:187–201

    Article  CAS  PubMed  Google Scholar 

  • Cheniaux E, Filgueiras A, Silva Rde A, Silveira LA, Nunes AL, Landeira-Fernandez J (2014) Increased energy/activity, not mood changes, is the core feature of mania. J Affect Disord 152-154:256–261

    Article  PubMed  Google Scholar 

  • Cipriani A, Barbui C, Salanti G, Rendell J, Brown R, Stockton S, Purgato M, Spineli LM, Goodwin GM, Geddes JR (2011) Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis. Lancet 378:1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Citrome L, Stensbol TB, Maeda K (2015) The preclinical profile of brexpiprazole: what is its clinical relevance for the treatment of psychiatric disorders? Expert Rev Neurother 15:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Roiser JP (2012) Dopamine, serotonin and impulsivity. Neuroscience 215:42–58

    Article  CAS  PubMed  Google Scholar 

  • Fitoussi A, Le Moine C, De Deurwaerdere P, Laqui M, Rivalan M, Cador M, Dellu-Hagedorn F (2015) Prefronto-subcortical imbalance characterizes poor decision-making: neurochemical and neural functional evidences in rats. Brain Struct Funct 220:3485–3496

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. The Journal of clinical psychiatry 67:e12

    Article  PubMed  Google Scholar 

  • Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 11(125–33):115

    Article  CAS  Google Scholar 

  • Hall FS, Itokawa K, Schmitt A, Moessner R, Sora I, Lesch KP, Uhl GR (2014) Decreased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function in knockout mice affects aging of dopaminergic systems. Neuropharmacology 76(Pt A):146–155

    Article  CAS  PubMed  Google Scholar 

  • Henry BL, Minassian A, Patt VM, Hua J, Young JW, Geyer MA, Perry W (2013) Inhibitory deficits in euthymic bipolar disorder patients assessed in the human behavioral pattern monitor. J Affect Disord 150:948–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry BL, Geyer MA, Buell MR, Perry W, Young JW, Minassian A (2014) Prepulse inhibition in HIV-1 gp120 transgenic mice after withdrawal from chronic methamphetamine. Behav Pharmacol 25:12–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horschitz S, Hummerich R, Lau T, Rietschel M, Schloss P (2005) A dopamine transporter mutation associated with bipolar affective disorder causes inhibition of transporter cell surface expression. Mol Psychiatry 10:1104–1109

    Article  CAS  PubMed  Google Scholar 

  • Ibanez A, Cetkovich M, Petroni A, Urquina H, Baez S, Gonzalez-Gadea ML, Kamienkowski JE, Torralva T, Torrente F, Strejilevich S, Teitelbaum J, Hurtado E, Guex R, Melloni M, Lischinsky A, Sigman M, Manes F (2012) The neural basis of decision-making and reward processing in adults with euthymic bipolar disorder or attention-deficit/hyperactivity disorder (ADHD). PLoS One 7:e37306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jollant F, Lawrence NS, Olie E, O'Daly O, Malafosse A, Courtet P, Phillips ML (2010) Decreased activation of lateral orbitofrontal cortex during risky choices under uncertainty is associated with disadvantageous decision-making and suicidal behavior. NeuroImage 51:1275–1281

    Article  PubMed  Google Scholar 

  • Kokras N, Dalla C (2014) Sex differences in animal models of psychiatric disorders. Br J Pharmacol 171:4595–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwek P, van den Buuse M (2013) Modafinil disrupts prepulse inhibition in mice: strain differences and involvement of dopaminergic and serotonergic activation. Eur J Pharmacol 699:132–140

    Article  CAS  PubMed  Google Scholar 

  • Larkin JD, Jenni NL, Floresco SB (2015) Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology

  • Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2017) Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology 234: 525-533.

  • Maeda K, Lerdrup L, Sugino H, Akazawa H, Amada N, McQuade RD, Stensbol TB, Bundgaard C, Arnt J, Kikuchi T (2014) Brexpiprazole II: antipsychotic-like and procognitive effects of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 350:605–614

    Article  PubMed  Google Scholar 

  • Malhi GS, Bargh DM, McIntyre R, Gitlin M, Frye MA, Bauer M, Berk M (2012) Balanced efficacy, safety, and tolerability recommendations for the clinical management of bipolar disorder. Bipolar Disord 14(Suppl 2):1–21

    Article  PubMed  Google Scholar 

  • Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Milienne-Petiot M, Kesby JP, Graves M, van Enkhuizen J, Semenova S, Minassian A, Markou A, Geyer MA, Young JW (2016) The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: modeling bipolar mania. Neuropharmacology 113:260–270

    Article  PubMed  Google Scholar 

  • Minassian A, Henry BL, Young JW, Masten V, Geyer MA, Perry W (2011) Repeated assessment of exploration and novelty seeking in the human behavioral pattern monitor in bipolar disorder patients and healthy individuals. PLoS One 6:e24185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minassian A, Young JW, Cope ZA, Henry BL, Geyer MA, Perry W (2015) Amphetamine increases activity but not exploration in humans and mice. Psychopharmacology

  • Must A, Horvath S, Nemeth VL, Janka Z (2013) The Iowa gambling task in depression—what have we learned about sub-optimal decision-making strategies? Front Psychol 4:732

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman AL, Meyer TD (2014) Impulsivity: present during euthymia in bipolar disorder?—a systematic review. International journal of bipolar disorders 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Novick DM, Swartz HA, Frank E (2010) Suicide attempts in bipolar I and bipolar II disorder: a review and meta-analysis of the evidence. Bipolar Disord 12:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Oosterhof CA, El Mansari M, Blier P (2014) Acute effects of brexpiprazole on serotonin, dopamine, and norepinephrine systems: an in vivo electrophysiologic characterization. J Pharmacol Exp Ther 351:585–595

    Article  PubMed  Google Scholar 

  • Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB (2015) Neural mechanisms regulating different forms of risk-related decision-making: insights from animal models. Neurosci Biobehav Rev 58:147–167

    Article  PubMed  Google Scholar 

  • Osby U, Brandt L, Correia N, Ekbom A, Sparen P (2001) Excess mortality in bipolar and unipolar disorder in Sweden. Arch Gen Psychiatry 58:844–850

    Article  CAS  PubMed  Google Scholar 

  • Oswald LM, Wand GS, Wong DF, Brown CH, Kuwabara H, Brasic JR (2015) Risky decision-making and ventral striatal dopamine responses to amphetamine: a positron emission tomography [(11)C]raclopride study in healthy adults. NeuroImage 113:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400:371–375

    Article  CAS  PubMed  Google Scholar 

  • Powell SB, Young JW, Ong JC, Caron MG, Geyer MA (2008) Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol 19:562–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell SB, Zhou X, Geyer MA (2009) Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 204:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA (2006a) Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 31:2349–2358

    Article  CAS  Google Scholar 

  • Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA (2006b) Differential contributions of dopamine D(1), D(2), and D(3) receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology 31:2349–2358

    Article  CAS  PubMed  Google Scholar 

  • Rivalan M, Ahmed SH, Dellu-Hagedorn F (2009) Risk-prone individuals prefer the wrong options on a rat version of the Iowa gambling task. Biol Psychiatry 66:743–749

    Article  PubMed  Google Scholar 

  • Rivalan M, Coutureau E, Fitoussi A, Dellu-Hagedorn F (2011) Inter-individual decision-making differences in the effects of cingulate, orbitofrontal, and prelimbic cortex lesions in a rat gambling task. Front Behav Neurosci 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Young JW, Halberstadt AL, Masten VL, Geyer MA (2012) Four factors underlying mouse behavior in an open field. Behav Brain Res 233:55–61

    Article  PubMed  Google Scholar 

  • van Enkhuizen J, Geyer MA, Kooistra K, Young JW (2013) Chronic valproate attenuates some, but not all, facets of mania-like behaviour in mice. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 16:1021–1031

    Article  Google Scholar 

  • van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, Geyer MA, Young JW (2014a) Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology.

  • van Enkhuizen J, Geyer MA, Halberstadt AL, Zhuang X, Young JW (2014b) Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J Affect Disord 155:247–254

    Article  PubMed  Google Scholar 

  • van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, Geyer MA, Young JW (2014c) Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 39:3112–3122

    Article  Google Scholar 

  • van Enkhuizen J, Geyer MA, Minassian A, Perry W, Henry BL, Young JW (2015a) Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: Rodent and human studies. Neuroscience and biobehavioral reviews

  • van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW (2015b) Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology (Berl).

  • Yoshimi N, Fujita Y, Ohgi Y, Futamura T, Kikuchi T, Hashimoto K (2014) Effects of brexpiprazole, a novel serotonin-dopamine activity modulator, on phencyclidine-induced cognitive deficits in mice: a role for serotonin 5-HT1A receptors. Pharmacol Biochem Behav 124:245–249

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Geyer MA (2010) Action of modafinil—increased motivation via the dopamine transporter inhibition and D1 receptors? Biol Psychiatry 67:784–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Minassian A, Paulus MP, Geyer MA, Perry W (2007) A reverse-translational approach to bipolar disorder: rodent and human studies in the behavioral pattern monitor. Neurosci Biobehav Rev 31:882–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA (2010a) The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 96:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Henry BL, Geyer MA (2011a) Predictive animal models of mania, hits, misses, and future directions. Br J Pharmacol

  • Young JW, Kooistra K, Geyer MA (2011b) Dopamine receptor mediation of the exploratory/hyperactivity effects of modafinil. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 36:1385–1396

    Article  CAS  Google Scholar 

  • Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA (2011c) Delayed procedural learning in alpha7-nicotinic acetylcholine receptor knockout mice. Genes Brain Behav 10:720–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, van Enkhuizen J, Winstanley CA, Geyer MA (2011d) Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J Psychopharmacol 25:934–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98:1982–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Luis F. Garcia, Dr. Jordy van Enkhuizen, and Ms. Mahalah Buell for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared W. Young.

Ethics declarations

All behavioral testing procedures were approved by the UCSD Institutional Animal Care and Use Committee, California, USA. The UCSD animal facility meets all federal and state requirements for animal care and was approved by the American Association for Accreditation of Laboratory Animal Care. This work was supported by grant funding from H. Lundbeck A/S, Valby, Denmark and by the National Institute of Mental Health (R01 MH071916).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milienne-Petiot, M., Geyer, M.A., Arnt, J. et al. Brexpiprazole reduces hyperactivity, impulsivity, and risk-preference behavior in mice with dopamine transporter knockdown—a model of mania. Psychopharmacology 234, 1017–1028 (2017). https://doi.org/10.1007/s00213-017-4543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4543-7

Keywords

Navigation