, Volume 234, Issue 7, pp 1093–1111 | Cite as

Effects of nicotine on response inhibition and interference control

  • Ulrich Ettinger
  • Eliana Faiola
  • Anna-Maria Kasparbauer
  • Nadine Petrovsky
  • Raymond C. K. Chan
  • Roman Liepelt
  • Veena Kumari
Original Investigation


Nicotine is a cholinergic agonist with known pro-cognitive effects in the domains of alerting and orienting attention. However, its effects on attentional top-down functions such as response inhibition and interference control are less well characterised. Here, we investigated the effects of 7 mg transdermal nicotine on performance on a battery of response inhibition and interference control tasks. A sample of N = 44 healthy adult non-smokers performed antisaccade, stop signal, Stroop, go/no-go, flanker, shape matching and Simon tasks, as well as the attentional network test (ANT) and a continuous performance task (CPT). Nicotine was administered in a within-subjects, double-blind, placebo-controlled design, with order of drug administration counterbalanced. Relative to placebo, nicotine led to significantly shorter reaction times on a prosaccade task and on CPT hits but did not significantly improve inhibitory or interference control performance on any task. Instead, nicotine had a negative influence in increasing the interference effect on the Simon task. Nicotine did not alter inter-individual associations between reaction times on congruent trials and error rates on incongruent trials on any task. Finally, there were effects involving order of drug administration, suggesting practice effects but also beneficial nicotine effects when the compound was administered first. Overall, our findings support previous studies showing positive effects of nicotine on basic attentional functions but do not provide direct evidence for an improvement of top-down cognitive control through acute administration of nicotine at this dose in healthy non-smokers.


Nicotine Acetylcholine Cognition Executive function Inhibitory control Attention 



We would like to thank Isabel Dietrich, Hannah-Christine Faber, Alena Grimm and Moritz Esser for assistance with data collection. Nadine Petrovsky was supported by a Gielen-Leyendecker Fellowship. Veena Kumari gratefully acknowledges a Humboldt Research Award from the Humboldt Foundation. The study received no further grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

Ulrich Ettinger, Eliana Faiola, Anna Kasparbauer, Nadine Petrovsky, Raymond Chan, Roman Liepelt and Veena Kumari declare that they have no conflict of interest.

Supplementary material

213_2017_4542_MOESM1_ESM.pdf (310 kb)
ESM 1 (PDF 310 kb)


  1. AhnAllen CG, Nestor PG, Shenton ME et al (2008) Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res 100:261–269. doi: 10.1016/j.schres.2007.07.030 CrossRefPubMedGoogle Scholar
  2. Barch DM, Braver TS, Carter CS et al (2009) CNTRICS final task selection: executive control. Schizophr Bull 35:115–135. doi: 10.1093/schbul/sbn154 CrossRefPubMedGoogle Scholar
  3. Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79CrossRefPubMedGoogle Scholar
  4. Barkley R (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94. doi: 10.1037/0033-2909.121.1.65 CrossRefPubMedGoogle Scholar
  5. Barr RS, Culhane MA, Jubelt LE et al (2008) The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls. Neuropsychopharmacology 33:480–490. doi: 10.1038/sj.npp.1301423 CrossRefPubMedGoogle Scholar
  6. Beer AL, Vartak D, Greenlee MW (2013) Nicotine facilitates memory consolidation in perceptual learning. Neuropharmacology 64:443–451. doi: 10.1016/j.neuropharm.2012.06.019 CrossRefPubMedGoogle Scholar
  7. Beglinger LJ, Gaydos B, Tangphao-Daniels O et al (2005) Practice effects and the use of alternate forms in serial neuropsychological testing. Arch Clin Neuropsychol 20:517–529. doi: 10.1016/j.acn.2004.12.003 CrossRefPubMedGoogle Scholar
  8. Bekker EM, Böcker KBE, Van Hunsel F et al (2005) Acute effects of nicotine on attention and response inhibition. Pharmacol Biochem Behav 82:539–548. doi: 10.1016/j.pbb.2005.10.009 CrossRefPubMedGoogle Scholar
  9. Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speed-accuracy tradeoff. Trends Neurosci 33:10–16CrossRefPubMedGoogle Scholar
  10. Bundesen C, Vangkilde S, Petersen A (2014) Recent developments in a computational theory of visual attention (TVA). Vis Res 116:1–9. doi: 10.1016/j.visres.2014.11.005 Google Scholar
  11. Cornblatt BA, Risch NJ, Faris G et al (1988) The continuous performance test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res 26:223–238. doi: 10.1016/0165-1781(88)90076-5 CrossRefPubMedGoogle Scholar
  12. Davidson DJ, Zacks RT, Williams CC (2003) Stroop interference, practice, and aging. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 10:85–98. doi: 10.1076/anec. CrossRefPubMedPubMedCentralGoogle Scholar
  13. DeSchepper B, Treisman A (1996) Visual memory for novel shapes: implicit coding without attention. J Exp Psychol Learn Mem Cogn 22:27–47. doi: 10.1037/0278-7393.22.1.27 CrossRefPubMedGoogle Scholar
  14. Dinur-Klein L, Kertzman S, Rosenberg O et al (2014) Response inhibition and sustained and attention in heavy smokers versus non-smokers. Isr J Psychiatry Relat Sci 51:240–246PubMedGoogle Scholar
  15. Dunbar K, MacLeod CM (1984) A horse race of a different color: Stroop interference patterns with transformed words. J Exp Psychol Hum Percept Perform 10:622–639. doi: 10.1037/0096-1523.10.5.622 CrossRefPubMedGoogle Scholar
  16. Easterbrook JA (1959) The effect of emotion on cue utilization and the organization of behavior. Psychol Rev 66:183–201. doi: 10.1037/h0047707 CrossRefPubMedGoogle Scholar
  17. Elliott R, Sahakian BJ, Matthews K et al (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology 131:196–206. doi: 10.1007/s002130050284 CrossRefPubMedGoogle Scholar
  18. Ettinger U, Kumari V (2003) Pharmacological studies of smooth pursuit and antisaccade eye movements in schizophrenia: current status and directions for future research. Curr Neuropharmacol 1:285–300CrossRefGoogle Scholar
  19. Ettinger U, Kumari V, Crawford TJ et al (2003) Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology 40:620–628CrossRefPubMedGoogle Scholar
  20. Ettinger U, Kumari V, Crawford TJ et al (2005) Saccadic eye movements, schizotypy, and the role of neuroticism. Biol Psychol 68:61–78. doi: 10.1016/j.biopsycho.2004.03.014 CrossRefPubMedGoogle Scholar
  21. Ettinger U, Williams SCRR, Patel D et al (2009) Effects of acute nicotine on brain function in healthy smokers and non-smokers: estimation of inter-individual response heterogeneity. NeuroImage 45:549–561. doi: 10.1016/j.neuroimage.2008.12.029 CrossRefPubMedGoogle Scholar
  22. Fan J, McCandliss BD, Sommer T et al (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14:340–347. doi: 10.1162/089892902317361886 CrossRefPubMedGoogle Scholar
  23. Fan J, McCandliss BD, Fossella J et al (2005) The activation of attentional networks. NeuroImage 26:471–479. doi: 10.1016/j.neuroimage.2005.02.004 CrossRefPubMedGoogle Scholar
  24. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. doi: 10.3758/BF03193146 CrossRefPubMedGoogle Scholar
  25. Foulds J, Stapleton J, Swettenham J et al (1996) Cognitive performance effects of subcutaneous nicotine in smokers and never-smokers. Psychopharmacology 127:31–38CrossRefPubMedGoogle Scholar
  26. Foulds J, Stapleton JA, Bell N et al (1997) Mood and physiological effects of subcutaneous nicotine in smokers and never-smokers. Drug Alcohol Depend 44:105–115. doi: 10.1016/S0376-8716(96)01327-0 CrossRefPubMedGoogle Scholar
  27. Franken IHA, van Strien JW, Kuijpers I (2010) Evidence for a deficit in the salience attribution to errors in smokers. Drug Alcohol Depend 106:181–185. doi: 10.1016/j.drugalcdep.2009.08.014 CrossRefPubMedGoogle Scholar
  28. Freedman R (2014) α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia. Annu Rev Med 65:245–261. doi: 10.1146/annurev-med-092112-142937 CrossRefPubMedGoogle Scholar
  29. Friedman NP, Miyake A (2004) The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen 133:101–135. doi: 10.1037/0096-3445.133.1.101 CrossRefPubMedGoogle Scholar
  30. Giessing C, Thiel CM, Alexander-Bloch AF et al (2013) Human brain functional network changes associated with enhanced and impaired attentional task performance. J Neurosci 33:5903–5914. doi: 10.1523/JNEUROSCI.4854-12.2013 CrossRefPubMedGoogle Scholar
  31. Goodman R (2014) Humility pills: building an ethics of cognitive enhancement. J Med Philos (United Kingdom) 39:258–278. doi: 10.1093/jmp/jhu017 CrossRefGoogle Scholar
  32. Gorsline J, Gupta SK, Dye D, Rolf CN (1993) Steady-state pharmacokinetics and dose relationship of nicotine delivered from Nicoderm (nicotine transdermal system). J Clin Pharmacol 33:161–168. doi: 10.1002/j.1552-4604.1993.tb03938.x CrossRefPubMedGoogle Scholar
  33. Gorsline J, Okerholm RA, Rolf CN et al (1992) Comparison of plasma nicotine concentrations after application of nicoderm (nicotine transdermal system) to different skin sites. J Clin Pharmacol 32:576–581. doi: 10.1177/009127009203200615 CrossRefPubMedGoogle Scholar
  34. Hahn B (2015) Nicotinic receptors and attention. In: Current topics in behavioral neurosciences. pp 103–135Google Scholar
  35. Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hommel B (2011) The Simon effect as tool and heuristic. Acta Psychol 136:189–202. doi: 10.1016/j.actpsy.2010.04.011 CrossRefGoogle Scholar
  37. Husain M, Mehta MA (2011) Cognitive enhancement by drugs in health and disease. Trends Cogn Sci 15:28–36CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hutton SB, Ettinger U (2006) The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology 43:302–313. doi: 10.1111/j.1469-8986.2006.00403.x CrossRefPubMedGoogle Scholar
  39. Ishigami Y, Klein RM (2010) Repeated measurement of the components of attention using two versions of the Attention Network Test (ANT): stability, isolability, robustness, and reliability. J Neurosci Methods 190:117–128. doi: 10.1016/j.jneumeth.2010.04.019 CrossRefPubMedGoogle Scholar
  40. Javitt DC, Freedman R (2015) Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 172:17–31. doi: 10.1176/appi.ajp.2014.13121691 CrossRefPubMedGoogle Scholar
  41. Kambeitz J, la Fougère C, Werner N, Pogarell O, Riedel M, Falkai P, Ettinger U (2016) Nicotine-dopamine-transporter interactions during reward-based decision making. Eur Neuropsychopharmacol 26(6):938–947. doi: 10.1016/j.euroneuro.2016.03.011
  42. Kaufman LD, Pratt J, Levine B, Black SE (2010) Antisaccades: a probe into the dorsolateral prefrontal cortex in Alzheimer’s disease. A critical review J Alzheimers Dis 19:781–793. doi: 10.3233/JAD-2010-1275 PubMedGoogle Scholar
  43. Kleykamp BA, Jennings JM, Blank MD, Eissenberg T (2005) The effects of nicotine on attention and working memory in never-smokers. Psychol Addict Behav 19:433–438. doi: 10.1037/0893-164X.19.4.433 CrossRefPubMedGoogle Scholar
  44. Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychol Rev 97:253–270. doi: 10.1037/0033-295X.97.2.253 CrossRefPubMedGoogle Scholar
  45. Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29:1021–1034. doi: 10.1016/j.neubiorev.2005.02.006 CrossRefPubMedGoogle Scholar
  46. Lecrubier Y, Sheehan DV, Weiller E et al (1997) The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry 12:224–231. doi: 10.1016/S0924-9338(97)83296-8 CrossRefGoogle Scholar
  47. Lehrl S, Triebig G, Fischer B (1995) Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol Scand 91:335–345. doi: 10.1111/j.1600-0404.1995.tb07018.x CrossRefPubMedGoogle Scholar
  48. Lindgren M, Stenberg G, Rosén I (1996) Effects of nicotine in visual attention tasks. Hum Psychopharmacol Clin Exp 11:47–51. doi: 10.1002/(SICI)1099-1077(199601)11:1<47::AID-HUP743>3.0.CO;2-1 CrossRefGoogle Scholar
  49. Luijten M, van Meel CS, Franken IHA (2011) Diminished error processing in smokers during smoking cue exposure. Pharmacol Biochem Behav 97:514–520. doi: 10.1016/j.pbb.2010.10.012 CrossRefPubMedGoogle Scholar
  50. Mancuso G, Warburton DM, Mélen M et al (1999) Selective effects of nicotine on attentional processes. Psychopharmacology 146:199–204CrossRefPubMedGoogle Scholar
  51. Massen C (2004) Parallel programming of exogenous and endogenous components in the antisaccade task. Q J Exp Psychol A 57:475–498. doi: 10.1080/02724980343000341 CrossRefPubMedGoogle Scholar
  52. Mehta M (2002) Where do we go from here? The importance of initial values. Neuropsychopharmacology 27:879–880. doi: 10.1016/S0893-133X(02)00359-7 CrossRefPubMedGoogle Scholar
  53. Meyhöfer I, Bertsch K, Esser M, Ettinger U (2015) Variance in saccadic eye movements reflects stable traits. Psychophysiology. doi: 10.1111/psyp.12592 PubMedGoogle Scholar
  54. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMedGoogle Scholar
  55. Miyake A, Friedman NP (2012) The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci 21:8–14. doi: 10.1177/0963721411429458 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miyake A, Friedman NP, Emerson MJ et al (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41:49–100. doi: 10.1006/cogp.1999.0734 CrossRefPubMedGoogle Scholar
  57. Myers CS, Taylor RC, Salmeron BJ et al (2013) Nicotine enhances alerting, but not executive, attention in smokers and nonsmokers. Nicotine Tob Res 15:277–281. doi: 10.1093/ntr/nts108 CrossRefPubMedGoogle Scholar
  58. Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performanceGoogle Scholar
  59. Newhouse PA, Potter AS, Dumas JA, Thiel CM (2011) Functional brain imaging of nicotinic effects on higher cognitive processes. In: Biochemical pharmacology. pp 943–951Google Scholar
  60. Noorani I, Carpenter RHS (2013) Antisaccades as decisions: LATER model predicts latency distributions and error responses. Eur J Neurosci 37:330–338. doi: 10.1111/ejn.12025 CrossRefPubMedGoogle Scholar
  61. Norris H (1971) The action of sedatives on brain stem oculomotor systems in man. Neuropharmacology 10:181–191. doi: 10.1016/0028-3908(71)90039-6 CrossRefPubMedGoogle Scholar
  62. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. doi: 10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
  63. Perkins KA, Jetton C, Keenan J (2003) Common factors across acute subjective effects of nicotine. Nicotine Tob Res 5:869–875. doi: 10.1080/14622200310001614629 CrossRefPubMedGoogle Scholar
  64. Petrovsky N, Ettinger U, Quednow BB et al (2012) Nicotine differentially modulates antisaccade performance in healthy male non-smoking volunteers stratified for low and high accuracy. Psychopharmacology 221:27–38. doi: 10.1007/s00213-011-2540-9 CrossRefPubMedGoogle Scholar
  65. Petrovsky N, Ettinger U, Kessler H et al (2013a) The effect of nicotine on sensorimotor gating is modulated by a CHRNA3 polymorphism. Psychopharmacology 229:31–40. doi: 10.1007/s00213-013-3081-1 CrossRefPubMedGoogle Scholar
  66. Petrovsky N, Ettinger U, Quednow BB et al (2013b) Nicotine enhances antisaccade performance in schizophrenia patients and healthy controls. Int J Neuropsychopharmacol 16:1473–1481. doi: 10.1017/S1461145713000011 CrossRefPubMedGoogle Scholar
  67. Pierce JE, McDowell JE (2016) Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI. J Neurophysiol 115:763–772. doi: 10.1152/jn.00776.2015 CrossRefPubMedGoogle Scholar
  68. Polner B, Aichert DS, Macare C et al (2015) Gently restless: association of ADHD-like traits with response inhibition and interference control. Eur Arch Psychiatry Clin Neurosci 265:689–699. doi: 10.1007/s00406-014-0531-7 CrossRefPubMedGoogle Scholar
  69. Portaccio E, Goretti B, Zipoli V et al (2010) Reliability, practice effects, and change indices for Rao’s Brief Repeatable Battery. Mult Scler 16:611–617. doi: 10.1177/1352458510362818 CrossRefPubMedGoogle Scholar
  70. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  71. Potter AS, Newhouse PA (2004) Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder. Psychopharmacology 176:182–194. doi: 10.1007/s00213-004-1874-y CrossRefPubMedGoogle Scholar
  72. Potter AS, Newhouse PA, Bucci DJ (2006) Central nicotinic cholinergic systems: a role in the cognitive dysfunction in attention-deficit/hyperactivity disorder? Behav Brain Res 175:201–211CrossRefPubMedGoogle Scholar
  73. Potter AS, Newhouse PA (2008) Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacol Biochem Behav 88:407–417. doi: 10.1016/j.pbb.2007.09.014 CrossRefPubMedGoogle Scholar
  74. Potter AS, Bucci DJ, Newhouse PA (2012) Manipulation of nicotinic acetylcholine receptors differentially affects behavioral inhibition in human subjects with and without disordered baseline impulsivity. Psychopharmacology 220:331–340. doi: 10.1007/s00213-011-2476-0 CrossRefPubMedGoogle Scholar
  75. Provost SC, Woodward R (1991) Effects of nicotine gum on repeated administration of the Stroop test. Psychopharmacology 104:536–540. doi: 10.1007/BF02245662 CrossRefPubMedGoogle Scholar
  76. Raghunathan TE, Rosenthal R, Rubin DB (1996) Comparing correlated but nonoverlapping correlations. Psychol Methods 1:178–183. doi: 10.1037/1082-989X.1.2.178 CrossRefGoogle Scholar
  77. Reilly JL, Lencer R, Bishop JR et al (2008) Pharmacological treatment effects on eye movement control. Brain Cogn 68:415–435. doi: 10.1016/j.bandc.2008.08.026 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ridderinkhof KR, Scheres A, Oosterlaan J, Sergeant JA (2005) Delta plots in the study of individual differences: new tools reveal response inhibition deficits in AD/Hd that are eliminated by methylphenidate treatment. J Abnorm Psychol 114:197–215. doi: 10.1037/0021-843X.114.2.197 CrossRefPubMedGoogle Scholar
  79. Rubia K, Smith A, Taylor E (2007) Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness. Child Neuropsychol 13:276–304. doi: 10.1080/09297040600770761 CrossRefPubMedGoogle Scholar
  80. Schaefer J, Giangrande E, Weinberger DR, Dickinson D (2013) The global cognitive impairment in schizophrenia: consistent over decades and around the world. Schizophr Res 150:42–50CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schlam TR, Japuntich SJ, Piper ME et al (2011) Cognitive conflict following appetitive versus negative cues and smoking cessation failure. Psychopharmacology 214:603–616. doi: 10.1007/s00213-010-2063-9 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schmechtig A, Lees J, Grayson L et al (2013) Effects of risperidone, amisulpride and nicotine on eye movement control and their modulation by schizotypy. Psychopharmacology 227:331–345. doi: 10.1007/s00213-013-2973-4 CrossRefPubMedGoogle Scholar
  83. Simon JR, Small AM (1969) Processing auditory information: interference from an irrelevant cue. J Appl Psychol 53:433–435. doi: 10.1037/h0028034 CrossRefPubMedGoogle Scholar
  84. Smucny J, Olincy A, Eichman LS, Tregellas JR (2015) Neuronal effects of nicotine during auditory selective attention. Psychopharmacology 232:2017–2028. doi: 10.1007/s00213-014-3832-7 CrossRefPubMedGoogle Scholar
  85. Suter TW, Buzzi R, Woodson PP, Bättig K (1983) Psychophysiological correlates of conflict solving and cigarette smoking. Act Nerv Super (Praha) 25:261–272Google Scholar
  86. Talanow T, Kasparbauer A-M, Steffens M et al (2016) Facing competition: neural mechanisms underlying parallel programming of antisaccades and prosaccades. Brain Cogn 107:37–47. doi: 10.1016/j.bandc.2016.05.006 CrossRefPubMedGoogle Scholar
  87. Thienel R, Voss B, Kellermann T et al (2009) Nicotinic antagonist effects on functional attention networks. Int J Neuropsychopharmacol 12:1295–1305. doi: 10.1017/S1461145709990551 CrossRefPubMedGoogle Scholar
  88. van den Wildenberg WPM, Wylie SA, Forstmann BU et al (2010) To head or to heed? Beyond the surface of selective action inhibition: a review. Front Hum Neurosci 4:222. doi: 10.3389/fnhum.2010.00222 PubMedPubMedCentralGoogle Scholar
  89. Vangkilde S, Bundesen C, Coull JT (2011) Prompt but inefficient: nicotine differentially modulates discrete components of attention. Psychopharmacology 218:667–680. doi: 10.1007/s00213-011-2361-x CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wesnes K, Revell A (1984) The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology 84:5–11CrossRefPubMedGoogle Scholar
  91. Wignall ND, De Wit H (2011) Effects of nicotine on attention and inhibitory control in healthy nonsmokers. Exp Clin Psychopharmacol 19:183–191. doi: 10.1037/a0023292 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wöstmann NM, Aichert DS, Costa A et al (2013) Reliability and plasticity of response inhibition and interference control. Brain Cogn 81:82–94. doi: 10.1016/j.bandc.2012.09.010 CrossRefPubMedGoogle Scholar
  93. Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482. doi: 10.1037/h0073415 CrossRefGoogle Scholar
  94. Yin J, Yuan K, Feng D et al (2015) Inhibition control impairments in adolescent smokers: electrophysiological evidence from a Go/NoGo study. Brain Imaging Behav. doi: 10.1007/s11682-015-9418-0 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ulrich Ettinger
    • 1
  • Eliana Faiola
    • 1
  • Anna-Maria Kasparbauer
    • 1
  • Nadine Petrovsky
    • 1
  • Raymond C. K. Chan
    • 2
    • 3
  • Roman Liepelt
    • 4
  • Veena Kumari
    • 5
  1. 1.Department of PsychologyUniversity of BonnBonnGermany
  2. 2.Neuropsychology and Applied Cognitive Neuroscience (NACN) Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institute of PsychologyGerman Sport University CologneCologneGermany
  5. 5.Department of Psychology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK

Personalised recommendations