Skip to main content
Log in

Blunted 5-HT1A receptor-mediated responses and antidepressant-like behavior in mice lacking the GABAB1a but not GABAB1b subunit isoforms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There is accumulating evidence for a role of GABAB receptors in depression. GABAB receptors are heterodimers of GABAB1 and GABAB2 receptor subunits. The predominant GABAB1 subunit isoforms are GABAB1a and GABAB1b. GABAB1 isoforms in mice differentially influence cognition, conditioned fear, and susceptibility to stress, yet their influence in tests of antidepressant-like activity has not been fully investigated.

Objectives

Given the interactions between GABAB receptors and the serotonergic system and the involvement of 5-HT1A receptors (5-HT1AR) in antidepressant action, we sought to evaluate 5-HT1AR function in GABAB1a −/− and GABAB1b −/− mice.

Methods

GABAB1a −/− and GABAB1b −/− mice were assessed in the forced swim test (FST), and body temperature and hypothalamic-pituitary-adrenal (HPA) responses to the 5-HT1AR agonist 8-OH-DPAT were determined. Brain 5-HT1AR expression was assessed by [3H]-MPPF and [3H]-8-OH-DPAT autoradiography and 5-HT1AR G-protein coupling by [35S]GTP-γ-S autoradiography.

Results

As previously described, GABAB1a −/− mice showed an antidepressant-like profile in the FST. GABAB1a −/− mice also demonstrated profoundly blunted hypothermic and motoric responses to 8-OH-DPAT. Furthermore, 8-OH-DPAT-induced corticosterone and adrenocorticotropic hormone (ACTH) release were both attenuated in GABAB1a −/− mice. Interestingly, [3H]-MPPF and [3H]-8-OH-DPAT binding was largely unaffected by genotype. [35S]GTP-γ-S autoradiography suggested that altered 5-HT1AR G-protein coupling only partially contributes to the functional presynaptic 5-HT1AR desensitization, and not at all to the blunted postsynaptic 5-HT1AR-mediated responses, seen in GABAB1a −/− mice.

Conclusion

These data demonstrate distinct functional links between 5-HT1ARs and the GABAB1a subunit isoform and suggest that the GABAB1a isoform may be implicated in the antidepressant-like effects of GABAB receptor antagonists and in neurobiological mechanisms underlying depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abellan MT, Adell A, Honrubia MA, Mengod G, Artigas F (2000a) GABAB-RI receptors in serotonergic neurons: effects of baclofen on 5-HT output in rat brain. Neuroreport 11:941–945

  • Abellan MT, Jolas T, Aghajanian GK, Artigas F (2000b) Dual control of dorsal raphe serotonergic neurons by GABAB receptors. Electrophysiological and Microdialysis Studies Synapse 36:21–34. doi:10.1002/(SICI)1098-2396(200004)36:1<21::AID-SYN3>3.0.CO;2-D

  • Albert PR, Vahid-Ansari F, Luckhart C (2014) Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression front. Behav Neurosci 8:199. doi:10.3389/fnbeh.2014.00199

  • Artigas F, Romero L, de Montigny C, Blier P (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378–383. doi:10.1016/S0166-2236(96)10037-0

    Article  CAS  PubMed  Google Scholar 

  • Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. Behav Brain Res 73:277–280

  • Berendsen HH, Broekkamp CL, van Delft AM (1991) Depletion of brain serotonin differently affects behaviors induced by 5HT1A, 5HT1C, and 5HT2 receptor activation in rats. Behav Neural Biol 55:214–226

  • Bill DJ, Knight M, Forster EA, Fletcher A (1991) Direct evidence for an important species difference in the mechanism of 8-OH-DPAT-induced hypothermia. Br J Pharmacol 103:1857–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABAB-R1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412:1–16

  • Blier P, Bergeron R, de Montigny C (1997) Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 16:333–338. doi:10.1016/S0893-133X(96)00242-4

  • Blier P, Seletti B, Gilbert F, Young SN, Benkelfat C (2002) Serotonin 1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 27:301–308

    Article  CAS  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  CAS  PubMed  Google Scholar 

  • Bluet Pajot MT, Mounier F, di Sciullo A, Schmidt B, Kordon C (1995) Differential sites of action of 8OHDPAT, a 5HT1A agonist, on ACTH and PRL secretion in the rat. Neuroendocrinology 61:159–166

    Article  CAS  PubMed  Google Scholar 

  • Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 34:2376–2389. doi:10.1038/npp.2009.75

  • Bortolozzi A et al (2012) Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol Psychiatry 17:612–623. doi:10.1038/mp.2011.92

    Article  CAS  PubMed  Google Scholar 

  • Castro ME, Diaz A, del Olmo E, Pazos A (2003) Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44:93–101

    Article  PubMed  Google Scholar 

  • Clarke WP, Yocca FD, Maayani S (1996) Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. J Pharmacol Exp Ther 277:1259–1266

    CAS  PubMed  Google Scholar 

  • Cornelisse LN et al (2007) Reduced 5-HT1A- and GABAB receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol 98:196–204. doi:10.1152/jn.00109.2007

    Article  CAS  PubMed  Google Scholar 

  • Costa AC, Stasko MR, Stoffel M, Scott-McKean JJ (2005) G-protein-gated potassium (GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically induced hypothermic responses. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25:7801–7804. doi:10.1523/JNEUROSCI.1699-05.2005

  • Cryan JF, Kaupmann K (2005) Don’t worry ‘B’ happy!: a role for GABAB receptors in anxiety and depression. Trends Pharmacol Sci 26:36–43. doi:10.1016/j.tips.2004.11.004

  • Cryan JF, Kelliher P, Kelly JP, Leonard BE (1999) Comparative effects of serotonergic agonists with varying efficacy at the 5-HT1A receptor on core body temperature: modification by the selective 5-HT1A receptor antagonist WAY 100635. J Psychopharmacol 13:278–283

  • Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17:2409–2417

    Article  PubMed  Google Scholar 

  • Cryan JF, Leonard BE (2000) 5-HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Human Psychopharmacology 15:113–135. doi:10.1002/(SICI)1099-1077(200003)15:2<113::AID-HUP150>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625. doi:10.1016/j.neubiorev.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  • De Vry J (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology 121:1–26

    Article  CAS  PubMed  Google Scholar 

  • Fabre V et al (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

  • Feldman S, Newman ME, Weidenfeld J (2000) Effects of adrenergic and serotonergic agonists in the amygdala on the hypothalamo-pituitary-adrenocortical axis. Brain Res Bull 52:531–536

    Article  CAS  PubMed  Google Scholar 

  • Felice D, O’Leary OF, Pizzo RC, Cryan JF (2012) Blockade of the GABAB receptor increases neurogenesis in the ventral but not dorsal adult hippocampus: relevance to antidepressant action. Neuropharmacology 63:1380–1388. doi:10.1016/j.neuropharm.2012.06.066

  • Ferres-Coy A et al (2013) Acute 5-HT1A autoreceptor knockdown increases antidepressant responses and serotonin release in stressful conditions. Psychopharmacology 225:61–74. doi:10.1007/s00213-012-2795-9

  • Gardier AM, Gruwez B, Trillat AC, Jacquot C, Hen R, Bourin M (2001) Interaction between 5-HT1A and 5-HT1B receptors: effects of 8-OH-DPAT-induced hypothermia in 5-HT1B receptor knockout mice. Eur J Pharmacol 421:171–175

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13:380–394. doi:10.1038/nrn3249

  • Ghose S, Winter MK, McCarson KE, Tamminga CA, Enna SJ (2011) The GABAB; receptor as a target for antidepressant drug action. Br J Pharmacol 162:1–17. doi:10.1111/j.1476-5381.2010.01004.x

  • Giachino C et al (2014) GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 141:83–90. doi:10.1242/dev.102608

    Article  CAS  PubMed  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Gray JA, Goodwin GM, Heal DJ, Green AR (1987) Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhanced by antidepressant drugs and ECS. Br J Pharmacol 92:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JA, Green AR (1987) Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. Br J Pharmacol 92:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AR, Backus LI (1990) Animal models of serotonin behaviour. In: Whitaker-Azmitia PM, Peroutka S (eds) The neuropharmacology of serotonin, Annals of the New York Academy of Sciences, vol 600. The New York Academy of Sciences, New York, pp 237–249

    Google Scholar 

  • Hamon M (2000) The main features of central 5-HT1A receptors. In: Baumgarten HG, Göthert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Springer-Verlag, Heidelberg, pp 239–268

    Chapter  Google Scholar 

  • Hensler JG (2002) Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology 26:565–573. doi:10.1016/S0893-133X(01)00395-5

  • Hensler JG (2003) Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72:1665–1682

    Article  CAS  PubMed  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:203–214. doi:10.1016/j.neubiorev.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Mengod G, Palacios JM (1992) The 5-HT receptor family: the use of radioligands and other tools to study receptor distribution. In: Olesen J, Saxena PR (eds) 5-Hydroxytryptamine mechanisms in primary headache, Frontiers in Headache Research. Raven Press, New York, pp 40-54

  • Innis RB, Nestler EJ, Aghajanian GK (1988) Evidence for G protein mediation of serotonin- and GABAB-induced hyperpolarization of rat dorsal raphe neurons. Brain Res 459:27–36

    Article  CAS  PubMed  Google Scholar 

  • Jacobson LH, Bettler B, Kaupmann K, Cryan JF (2006a) GABAB1 receptor subunit isoforms exert a differential influence on baseline but not GABAB receptor agonist-induced changes in mice. J Pharm Exp Ther 319:1317–26. doi:10.1124/jpet.106.111971

  • Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF (2006b) GABAB1 receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 26:8800–8803. doi:10.1523/JNEUROSCI.2076-06.2006

  • Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF (2007) Specific roles of GABAB1 receptor isoforms in cognition. Behav Brain Res 181:158–162. doi:10.1016/j.bbr.2007.03.033

  • Jacobson LH, Sweeney FF, Kaupmann K, O’Leary OF, Gassmann M, Bettler B, Cryan JF (2016) Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine. Behav Brain Res 298:12–16. doi:10.1016/j.bbr.2015.10.039

  • Johnson RG, Fiorella D, Winter JC, Rabin RA (1997) [3H]8-OH-DPAT labels a 5-HT site coupled to inhibition of phosphoinositide hydrolysis in the dorsal raphe. Eur J Pharmacol 329:99–106

    Article  CAS  PubMed  Google Scholar 

  • Kung HF, Stevenson DA, Zhuang ZP, Kung MP, Frederick D, Hurt SD (1996) New 5-HT1A receptor antagonist: [3H]p-MPPF. Synapse 23:344–346. doi:10.1002/(SICI)1098-2396(199608)23:4&lt;344::AID-SYN13&gt;3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Larsson LG, Renyi L, Ross SB, Svensson B, Angeby-Moller K (1990) Different effects on the responses of functional pre- and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology 29:86–91

    Article  Google Scholar 

  • Lloyd KG, Thuret F, Pilc A (1985) Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 235:191–199

    CAS  PubMed  Google Scholar 

  • Man MS, Young AH, McAllister-Williams RH (2002) Corticosterone modulation of somatodendritic 5-HT1A receptor function in mice. J Psychopharmacol 16:245–252

    Article  CAS  PubMed  Google Scholar 

  • Mannoury la Cour C, Boni C, Hanoun N, Lesch KP, Hamon M, Lanfumey L (2001) Functional consequences of 5-HT transporter gene disruption on 5-HT1A receptor-mediated regulation of dorsal raphe and hippocampal cell activity. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 21:2178–2185

  • Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70:1013–1021. doi:10.1124/mol.106.022756

    Article  PubMed  Google Scholar 

  • Mannoury la Cour C, Hanoun N, Melfort M, Hen R, Lesch KP, Hamon M, Lanfumey L (2004) GABA(B) receptors in 5-HT transporter- and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J Neurochem 89:886–896. doi:10.1111/j.1471-4159.2004.02367.x

    Article  PubMed  Google Scholar 

  • Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ (1992) Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br J Pharmacol 107:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister-Williams RH, Man MS, Young AH (1999) Effects of adrenalectomy on 8-OH-DPAT induced hypothermia in mice. Psychopharmacology 142:73–77

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Rivet JM, Canton H, Le Marouille-Girardon S, Gobert A (1993) Induction of hypothermia as a model of 5-hydroxytryptamine1A receptor-mediated activity in the rat: a pharmacological characterization of the actions of novel agonists and antagonists. J Pharmacol Exp Ther 264:1364–1376

    CAS  PubMed  Google Scholar 

  • Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF (2004) Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 29:1050–1062. doi:10.1038/sj.npp.1300413

  • Mombereau C, Kaupmann K, Gassmann M, Bettler B, van der Putten H, Cryan JF (2005) Altered anxiety and depression-related behaviour in mice lacking GABAB2 receptor subunits. Neuroreport 16:307–310

  • Nakagawa Y, Sasaki A, Takashima T (1999) The GABA(B) receptor antagonist CGP36742 improves learned helplessness in rats. Eur J Pharmacol 381:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nowak G et al. (2006) Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. Br J Pharmacol 149:581–90. doi:10.1038/sj.bjp.0706845

  • O’Leary OF et al (2014) GABAB1 receptor subunit isoforms differentially regulate stress resilience. Proc Natl Acad Sci U S A 111:15232–15237. doi:10.1073/pnas.1404090111

  • Palacios JM, Mengod G, Hoyer D (1993) Brain serotonin subtypes: radioligand binding assays, second messengers, ligand autoradiography, and in situ hybridization histochemistry. In: Conn PM (ed) Receptors: Molecular Biology, Receptor Subclasses, Localization, and Ligand Design, vol 12. Methods in Neurosciences. Academic Press, Inc., New York, pp 238–262

  • Perez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616. doi:10.1016/j.neuron.2006.04.019

  • Pilc A, Lloyd KG (1984) Chronic antidepressants and GABA “B” receptors: a GABA hypothesis of antidepressant drug action. Life Sci 35:2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Rausch JL, Johnson ME, Kasik KE, Stahl SM (2006) Temperature regulation in depression: functional 5HT1A receptor adaptation differentiates antidepressant response. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 31:2274–2280. doi:10.1038/sj.npp.1301088

    CAS  Google Scholar 

  • Richardson-Jones JW et al (2011) Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 31:6008–6018. doi:10.1523/JNEUROSCI.5836-10.2011

    Article  CAS  Google Scholar 

  • Rossi DV, Burke TF, McCasland M, Hensler JG (2008) Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline. J Neurochem 105:1091–1099. doi:10.1111/j.1471-4159.2007.05201.x

    Article  CAS  PubMed  Google Scholar 

  • Sands SA, Reisman SA, Enna SJ (2004) Effect of antidepressants on GABA(B) receptor function and subunit expression in rat hippocampus. Biochem Pharmacol 68:1489–1495. doi:10.1016/j.bcp.2004.07.027

    Article  CAS  PubMed  Google Scholar 

  • Schwenk J et al (2016) Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 19:233–242. doi:10.1038/nn.4198

    Article  CAS  PubMed  Google Scholar 

  • Shaban H et al (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9:1028–1035. doi:10.1038/nn1732

    Article  CAS  PubMed  Google Scholar 

  • Sim-Selley LJ, Vogt LJ, Xiao R, Childers SR, Selley DE (2000) Region-specific changes in 5-HT(1A) receptor-activated G-proteins in rat brain following chronic buspirone. Eur J Pharmacol 389:147–153

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA, Cryan JF (2006) The role of GABA(B) receptors in depression and antidepressant-related behavioural responses. Drug Develop Res 67:477–494. doi:10.1002/ddr.20110

    Article  CAS  Google Scholar 

  • Slattery DA, Desrayaud S, Cryan JF (2005) GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. J Pharmacol Exp Ther 312:290–296. doi:10.1124/jpet.104.073536

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Ma Z, Auerbach SB (1996) Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol 119:1375–1384

  • Valdizan EM, Castro E, Pazos A (2010) Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Int J Neuropsychopharmacol 13:835–843. doi:10.1017/S1461145709990940

    Article  CAS  PubMed  Google Scholar 

  • Varga V, Sik A, Freund TF, Kocsis B (2002) GABA(B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 109:119–132

    Article  CAS  PubMed  Google Scholar 

  • Vienne J, Bettler B, Franken P, Tafti M (2010) Differential effects of GABAB receptor subtypes, γ-hydroxybutyric acid, and baclofen on EEG activity and sleep regulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30:14194–14204. doi:10.1523/JNEUROSCI.3145-10.2010

  • Vigot R et al (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601. doi:10.1016/j.neuron.2006.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249. doi:10.1002/hipo.20156

    Article  CAS  PubMed  Google Scholar 

  • Young AH, Goodwin GM, Dick H, Fink G (1994) Effects of glucocorticoids on 5-HT1A presynaptic function in the mouse. Psychopharmacology 114:360–364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Mental Health/National Institute on Drug Abuse grant U01 MH69062 (LHJ, KK, JFC, and Athina Markou) and the Swiss Science Foundation (31003A-152970, BB). LHJ, DH, BB and JFC were former employees and KK and DF are current employees of the Novartis Institutes for Biomedical Research. The authors thank Doncho Uzunov, Hugo Bürki, and Christian Kohler for expert technical assistance and Véronique Fabre for advice on [35S]GTP-γ-S autoradiography. The Florey Institute of Neuroscience and Mental Health acknowledges the support of the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura H. Jacobson or John F. Cryan.

Ethics declarations

All animal experiments were conducted in accordance with the Swiss guidelines and regulations and approved by the Veterinary Authority of Basel Stadt, Switzerland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, L.H., Hoyer, D., Fehlmann, D. et al. Blunted 5-HT1A receptor-mediated responses and antidepressant-like behavior in mice lacking the GABAB1a but not GABAB1b subunit isoforms. Psychopharmacology 234, 1511–1523 (2017). https://doi.org/10.1007/s00213-016-4521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4521-5

Keywords

Navigation