Advertisement

Psychopharmacology

, Volume 234, Issue 3, pp 393–401 | Cite as

Reinforcing properties of an intermittent, low dose of ketamine in rats: effects of sex and cycle

  • Katherine N. Wright
  • Caroline E. Strong
  • Marjorie N. Addonizio
  • Naomi C. Brownstein
  • Mohamed KabbajEmail author
Original Investigation

Abstract

Rationale

Repeated intermittent exposure to ketamine has rapid and long-lasting antidepressant effects, but the abuse potential has only been assessed at high doses. Furthermore, while females are more susceptible to depression and more sensitive to ketamine’s antidepressant-like effects, the abuse potential for ketamine in females is unknown.

Objectives

The objectives of this study are to determine the reinforcing properties of low-dose intermittent ketamine in adult rats of both sexes and determine whether cycling gonadal hormones influence females’ response to ketamine. In male rats, we also aimed to determine whether reinstatement to intermittent ketamine is comparable to intermittent cocaine.

Methods

Male rats intravenously self-administered cocaine (0.75 mg/kg/infusion) or ketamine (0.1 mg/kg/infusion) once every fourth day, while intact cycling female rats self-administered ketamine only during preidentified stages of their 4-day estrus cycle, when gonadal hormones are either high (proestrus) or low (diestrus). After acquiring self-administration, rats underwent daily extinction training followed by cue-primed and drug-primed reinstatement to assess drug-seeking behavior.

Results

Diestrus-trained females fail to maintain ketamine self-administration and did not display reinstatement to ketamine-paired cues. Males and proestrus-trained females reinstated to ketamine-paired cues. Ketamine-primed reinstatement was dependent on simultaneous cue presentation. Male rats reinstated to cocaine priming independent of cue presentation.

Conclusion

These findings indicate that females’s responsivity to this dose of ketamine depends on stage of cycle, as only proestrus-trained females and males respond to ketamine’s reinforcing effects under this treatment paradigm.

Keywords

Ketamine Self-administration Females Estrous cycle Intermittent Reinstatement Relapse 

Notes

Acknowledgements

This research was supported by R01MH 087583 and R01MH 099085 to MK. Special thanks to Samantha Pavlock, Elsa Johnson, and Amanda Dossat for their technical assistance. KNW and MK designed the experiments. KNW, CES, and MNA carried out the behavioral testing. KNW, NCB, and MK performed the data analysis. KNW and MK wrote the manuscript. All authors provided editorial input for the final draft.

Compliance with ethical standards

All protocols were approved by the Florida State University Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67(2):139–145. doi: 10.1016/j.biopsych.2009.08.038 CrossRefPubMedGoogle Scholar
  2. Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, ... Young E (2005) Strategies and methods for research on sex differences in brain and behavior. Endocrinology 146(4): 1650–1673. doi: 10.1210/en.2004-1142
  3. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354CrossRefPubMedGoogle Scholar
  4. Botanas CJ, de la Pena JB, Dela Pena IJ, Tampus R, Yoon R, Kim HJ et al (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: evidence of its abuse potential. Pharmacol Biochem Behav 133:31–36. doi: 10.1016/j.pbb.2015.03.007 CrossRefPubMedGoogle Scholar
  5. Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27–34. doi: 10.1016/j.neuropharm.2012.12.009 CrossRefPubMedGoogle Scholar
  6. Carroll ME, Batulis DK, Landry KL, Morgan AD (2005) Sex differences in the escalation of oral phencyclidine (PCP) self-administration under FR and PR schedules in rhesus monkeys. Psychopharmacology 180(3):414–426. doi: 10.1007/s00213-005-2182-x CrossRefPubMedGoogle Scholar
  7. Carroll ME, Roth ME, Voeller RK, Nguyen PD (2000) Acquisition of oral phencyclidine self-administration in rhesus monkeys: effect of sex. Psychopharmacology 149(4):401–408CrossRefPubMedGoogle Scholar
  8. Carroll ME, Stotz DC (1983) Oral d-amphetamine and ketamine self-administration by rhesus monkeys: effects of food deprivation. J Pharmacol Exp Ther 227(1):28–34PubMedGoogle Scholar
  9. Chen WY, Huang MC, Lin SK (2014) Gender differences in subjective discontinuation symptoms associated with ketamine use. Subst Abuse Treat Prev Policy 9:39. doi: 10.1186/1747-597X-9-39 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cicero TJ, Aylward SC, Meyer ER (2003) Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol Biochem Behav 74(3):541–549CrossRefPubMedGoogle Scholar
  11. Collins GT, Woods JH (2007) Drug and reinforcement history as determinants of the response-maintaining effects of quinpirole in the rat. J Pharmacol Exp Ther 323(2):599–605. doi: 10.1124/jpet.107.123042 CrossRefPubMedGoogle Scholar
  12. Cox BM, Young AB, See RE, Reichel CM (2013) Sex differences in methamphetamine seeking in rats: impact of oxytocin. Psychoneuroendocrinology 38(10):2343–2353. doi: 10.1016/j.psyneuen.2013.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. De Luca MT, Badiani A (2011) Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology 214(2):549–556. doi: 10.1007/s00213-010-2062-x CrossRefPubMedGoogle Scholar
  14. de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–143CrossRefPubMedGoogle Scholar
  15. Fattore L, Spano MS, Altea S, Angius F, Fadda P, Fratta W (2007) Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol 152(5):795–804. doi: 10.1038/sj.bjp.0707465 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and “depressed” mice exposed to chronic mild stress. Neuroscience 290:49–60. doi: 10.1016/j.neuroscience.2015.01.008 CrossRefPubMedGoogle Scholar
  17. Holm S (1979) A simple sequential rejective method procedure. Scand J Stat 6:65–70Google Scholar
  18. Huang X, Huang K, Zheng W, Beveridge TJ, Yang S, Li X ... Liu Y (2015) The effects of GSK-3beta blockade on ketamine self-administration and relapse to drug-seeking behavior in rats. Drug Alcohol Depend 147: 257–265. doi: 10.1016/j.drugalcdep.2014.10.028
  19. Jansen KL (2000) A review of the nonmedical use of ketamine: use, users and consequences. J Psychoactive Drugs 32(4):419–433. doi: 10.1080/02791072.2000.10400244 CrossRefPubMedGoogle Scholar
  20. Jansen KL, Darracot-Cankovic R (2001) The nonmedical use of ketamine, part two: a review of problem use and dependence. J Psychoactive Drugs 33(2):151–158. doi: 10.1080/02791072.2001.10400480 CrossRefPubMedGoogle Scholar
  21. Kabbaj M (2006) Individual differences in vulnerability to drug abuse: the high responders/low responders model. CNS Neurol Disord Drug Targets 5(5):513–520CrossRefPubMedGoogle Scholar
  22. Lynch WJ, Carroll ME (1999) Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144(1):77–82CrossRefPubMedGoogle Scholar
  23. Lynch WJ, Carroll ME (2000) Reinstatement of cocaine self-administration in rats: sex differences. Psychopharmacology 148(2):196–200CrossRefPubMedGoogle Scholar
  24. McCarthy D, Harrigan S (1976) Dependence producing capacity of ketamine in Macaca mulatta. Anaesthesiology 399:160–168Google Scholar
  25. Morgan CJ, Curran HV (2012) Ketamine use: a review. Addiction 107(1):27–38. doi: 10.1111/j.1360-0443.2011.03576.x CrossRefPubMedGoogle Scholar
  26. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Iosifescu DV (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 74(4):250–256. doi: 10.1016/j.biopsych.2012.06.022 CrossRefPubMedGoogle Scholar
  27. National Research Council (2011) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US). doi: 10.17226/12910
  28. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1–128, http://CRAN.R-project.org/packages=nlme
  29. Saland SK, Schoepfer KJ, Kabbaj M (2016) Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner. Sci Rep 6:21322. doi: 10.1038/srep21322 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168(1–2):3–20. doi: 10.1007/s00213-002-1224-x CrossRefPubMedGoogle Scholar
  31. Stack A, Carrier N, Dietz D, Hollis F, Sorenson J, Kabbaj M (2010) Sex differences in social interaction in rats: role of the immediate-early gene zif268. Neuropsychopharmacology 35(2):570–580. doi: 10.1038/npp.2009.163 CrossRefPubMedGoogle Scholar
  32. Swalve N, Smethells JR, Carroll ME (2016) Sex differences in the acquisition and maintenance of cocaine and nicotine self-administration in rats. Psychopharmacology 233(6):1005–1013. doi: 10.1007/s00213-015-4183-8 CrossRefPubMedGoogle Scholar
  33. Trujillo KA, Smith ML, Sullivan B, Heller CY, Garcia C, Bates M (2011) The neurobehavioral pharmacology of ketamine: implications for drug abuse, addiction, and psychiatric disorders. ILAR J 52(3):366–378. doi: 10.1093/ilar.52.3.366 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Trujillo KA, Zamora JJ, Warmoth KP (2008) Increased response to ketamine following treatment at long intervals: implications for intermittent use. Biol Psychiatry 63(2):178–183. doi: 10.1016/j.biopsych.2007.02.014 CrossRefPubMedGoogle Scholar
  35. van der Kam EL, de Vry J, Tzschentke TM (2007) Effect of 2-methyl-6-(phenylethynyl) pyridine on intravenous self-administration of ketamine and heroin in the rat. Behav Pharmacol 18(8):717–724. doi: 10.1097/FBP.0b013e3282f18d58 CrossRefPubMedGoogle Scholar
  36. Venniro M, Mutti A, Chiamulera C (2015) Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology 232(24):4505–4514. doi: 10.1007/s00213-015-4077-9 CrossRefPubMedGoogle Scholar
  37. Wright KN, Hollis F, Duclot F, Dossat AM, Strong CE, Francis TC ... Kabbaj M (2015) Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J Neurosci 35(23): 8948–8958. doi: 10.1523/jneurosci.5227-14.2015
  38. Young AM, Woods JH (1981) Maintenance of behavior by ketamine and related compounds in rhesus monkeys with different self-administration histories. J Pharmacol Exp Ther 218(3):720–727PubMedGoogle Scholar
  39. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI … Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604): 481–486. doi:  10.1038/nature17998
  40. Zarate CA Jr., Singh JB, Carlson PL, Brutsche NE, Ameli R, Luckenbaugh DA ... Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8): 856–864. doi: 10.1001/archpsyc.63.8.856

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Katherine N. Wright
    • 1
  • Caroline E. Strong
    • 1
  • Marjorie N. Addonizio
    • 1
  • Naomi C. Brownstein
    • 2
    • 3
  • Mohamed Kabbaj
    • 1
    • 4
    Email author
  1. 1.Program in Neuroscience, Department of Biomedical SciencesFlorida State UniversityTallahasseeUSA
  2. 2.Department of Behavioral Sciences and Social MedicineFlorida State UniversityTallahasseeUSA
  3. 3.Department of StatisticsFlorida State UniversityTallahasseeUSA
  4. 4.College of Medicine, Department of Biomedical SciencesFlorida State UniversityTallahasseeUSA

Personalised recommendations