Skip to main content

The BTBR mouse model, cholinergic transmission, and environmental exposure to nitrous oxide

This is a preview of subscription content, access via your institution.


  • Cheng Y, Thomas A, Mardini F, Bianchi SL, Tang JX, Peng J, Wei H, Eckenhoff MF, Eckenhoff RG, Levy RJ (2012) Neurodevelopmental consequences of sub-clinical carbon monoxide exposure in newborn mice. PLoS One 7(2):e32029. doi:10.1371/journal.pone.0032029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Clifford A, Lang L, Chen R, Anstey KJ, Seaton A (2016) Exposure to air pollution and cognitive functioning across the life course—a systematic literature review. Environ Res 147:383–398. doi:10.1016/j.envres.2016.01.018

    CAS  Article  PubMed  Google Scholar 

  • Deutsch SI, Burket JA, Benson AD, Urbano MR (2016) The 15q13.3 deletion syndrome: deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 64:109–117. doi:10.1016/j.pnpbp.2015.08.001

    CAS  Article  Google Scholar 

  • Environmental Protection Agency. Air quality trends. Research Triangle Park (NC); 2016 [cited 2016 Sept 11]. Available from:

  • Flores-Pajot MC, Ofner M, Do MT, Lavigne E, Villeneuve PJ (2016) Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: a review and meta-analysis. Environ Res. doi:10.1016/j.envres.2016.07.030

    PubMed  Google Scholar 

  • Fluegge K (2016a) Does environmental exposure to the greenhouse gas, N2O, contribute to etiological factors in neurodevelopmental disorders? A Mini-Review of the Evidence Environ Toxicol Pharmacol 47:6–18. doi:10.1016/j.etap.2016.08.013

    CAS  Article  PubMed  Google Scholar 

  • Fluegge K (2016b) A reply to ‘metabolic effects of sapropterin treatment in autism spectrum disorder: a preliminary study. Transl Psychiatry 6:e793. doi:10.1038/tp.2016.24

  • Fluegge K (2016c) Maternal infection during pregnancy, risk of offspring autism, and the role of bacterial denitrification. Brain Behav Immun 57:371. doi:10.1016/j.bbi.2016.06.013

  • Fluegge K, Fluegge K (2016) Glyphosate use predicts healthcare utilization for ADHD in the healthcare cost and utilization project net (HCUPnet): a two-way fixed-effects analysis. Pol J Environ Stud 25(4):1489–1503. doi:10.15244/pjoes/61742

    Article  Google Scholar 

  • Gibson GE, Duffy TE (1981) Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J Neurochem 36(1):28–33

    CAS  Article  PubMed  Google Scholar 

  • Hsiao EY, McBride SW, Chow J, Mazmanian SK, Patterson PH (2012) Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A 109(31):12776–12781. doi:10.1073/pnas.1202556109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • McTighe SM, Neal SJ, Lin Q, Hughes ZA, Smith DG (2013) The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS One 8(4):e62189. doi:10.1371/journal.pone.0062189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Portmann RW, Daniel JS, Ravishankara AR (2012) Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos Trans R Soc Lond Ser B Biol Sci 367(1593):1256–1264. doi:10.1098/rstb.2011.0377

    CAS  Article  Google Scholar 

  • Schwartzer JJ, Onore CE, Rose D, Ashwood P (2016) C57BL/6J bone marrow transplant increases sociability in BTBR T+ Itpr3tf/J mice. Brain Behav Immun. doi:10.1016/j.bbi.2016.05.019

    Google Scholar 

  • St-Pierre S, Jiang W, Roy P, Champigny C, LeBlanc É, Morley BJ, Hao J, Simard AR (2016) Nicotinic acetylcholine receptors modulate bone marrow-derived pro-inflammatory monocyte production and survival. PLoS One 11(2):e0150230. doi:10.1371/journal.pone.0150230

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Ueta K, Sugimoto M, Uchida I, Mashimo T (2003) Nitrous oxide and xenon inhibit the human (alpha 7)5 nicotinic acetylcholine receptor expressed in Xenopus oocyte. Anesth Analg 96(2):443–448

    CAS  PubMed  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428. doi:10.1038/nri2566

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Almeida LE, Spornick NA, Kenyon N, Kamimura S, Khaibullina A, Nouraie M, Quezado ZM (2015) Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system. Psychopharmacology 232(23):4303–4316. doi:10.1007/s00213-015-4058-z

    CAS  Article  PubMed  Google Scholar 

  • Wu WL, Adams CE, Stevens KE, Chow KH, Freedman R, Patterson PH (2015) The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav Immun 46:192–202. doi:10.1016/j.bbi.2015.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Keith Fluegge.

Ethics declarations



Additional information

Originality: The content included in this correspondence is original and has not been previously published or considered elsewhere. Relevant prior works are appropriately cited.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fluegge, K. The BTBR mouse model, cholinergic transmission, and environmental exposure to nitrous oxide. Psychopharmacology 234, 319–321 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Autism Spectrum Disorder
  • Autism Spectrum Disorder
  • Neurodevelopmental Disorder
  • Nicotinic Cholinergic Receptor
  • BTBR Mouse