Skip to main content

The effects anandamide signaling in the prelimbic cortex and basolateral amygdala on coping with environmental stimuli in rats

Abstract

Rationale

Several lines of recent evidence suggest that endocannabinoids affect behavior by influencing the general patterns of challenge responding.

Objectives

Here, we investigated the brain mechanisms underlying this phenomenon in rats.

Methods

The anandamide hydrolysis inhibitor URB597 was condensed into the tip of stainless steel cannulae, which were chronically implanted slightly above the prelimbic cortex (PRL) or the basolateral amygdala (BLA), two important regions of coping and endocannabinoid action. Thereafter, we investigated behavioral responsiveness to ambient light level in the elevated plus-maze and conditioned fear tests.

Results

URB597 concentration was ~30 μg/mg protein in target areas; local brain anandamide levels increased threefold, without significant changes in 2-arachidonoylglycerol. High levels of illumination halved the time spent by controls in the open arms of the plus-maze. No similar decrease was observed in rats with URB597 implants in the PRL. High light decreased conditioned fear by 30 % in controls, but not in rats with prelimbic URB597 implants. Unresponsiveness to environmental challenges was not attributable to the anxiolytic effects of anandamide enhancement, as implants induced paradoxical anxiogenic-like effects under low light, which could be explained by effects on stimulus responsiveness rather than by effects on anxiety. URB597 implants targeting the BLA did not affect stimulus responsiveness.

Conclusions

Our findings show that elevated prelimbic anandamide signaling leads to less environment-dependent (more autonomous) behavioral responses to challenges, which is an attribute of active coping styles. These findings are discussed in light of two emerging concepts of endocannabinoid roles, particularly “emotional homeostasis” and “active coping.”

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aliczki M, Haller J (2015) Interactions between cannabinoid signaling and anxiety: a comparative analysis of intervention tools and behavioral effects. In: Campolongo P, Fattore L (eds) Cannabinoid modulation of emotion, memory, and motivation. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Baldwin DV (2013) Primitive mechanisms of trauma response: an evolutionary perspective on trauma-related disorders. Neurosci Biobehav Rev 37:1549–66. doi:10.1016/j.neubiorev.2013.06.004

    Article  PubMed  Google Scholar 

  • Barna I, Soproni K, Arszovszki A, Csabai K, Haller J (2007) WIN-55,212-2 chronically implanted into the CA3 region of the dorsal hippocampus impairs learning: a novel method for studying chronic, brain-area-specific effects of cannabinoids. Behav Pharmacol 18:515–20. doi:10.1097/FBP.0b013e3282d9e9f9

    Article  PubMed  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62:1103–10. doi:10.1016/j.biopsych.2006.12.001

    CAS  Article  PubMed  Google Scholar 

  • Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–24

    CAS  Article  PubMed  Google Scholar 

  • Cooke M, Peters E, Fannon D, Anilkumar AP, Aasen I, Kuipers E, Kumari V (2007) Insight, distress and coping styles in schizophrenia. Schizophr Res 94:12–22. doi:10.1016/j.schres.2007.04.030

    Article  PubMed  PubMed Central  Google Scholar 

  • Coppens CM, de Boer SF, Koolhaas JM (2010) Coping styles and behavioural flexibility: towards underlying mechanisms. Philos Trans R Soc Lond B Biol Sci 365:4021–8. doi:10.1098/rstb.2010.0217

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80

    Article  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–75. doi:10.1146/annurev.ne.15.030192.002033

    CAS  Article  PubMed  Google Scholar 

  • Fogaca MV, Aguiar DC, Moreira FA, Guimaraes FS (2012) The endocannabinoid and endovanilloid systems interact in the rat prelimbic medial prefrontal cortex to control anxiety-like behavior. Neuropharmacology 63:202–10

    CAS  Article  PubMed  Google Scholar 

  • Ganon-Elazar E, Akirav I (2009) Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci 29:11078–88

    CAS  Article  PubMed  Google Scholar 

  • Grossman SP (1960) Eating or drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science 132:301–2

    CAS  Article  PubMed  Google Scholar 

  • Gunduz-Cinar O, MacPherson KP, Cinar R, Gamble-George J, Sugden K, Williams B, Godlewski G, Ramikie TS, Gorka AX, Alapafuja SO, Nikas SP, Makriyannis A, Poulton R, Patel S, Hariri AR, Caspi A, Moffitt TE, Kunos G, Holmes A (2013) Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry 18:813–23. doi:10.1038/mp.2012.72

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Haj-Dahmane S, Shen RY (2011) Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 61:414–20. doi:10.1016/j.neuropharm.2011.02.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Haller J, Goldberg SR, Pelczer KG, Aliczki M, Panlilio LV (2013) The effects of anandamide signaling enhanced by the FAAH inhibitor URB597 on coping styles in rats. Psychopharmacology (Berl) 230:353–62. doi:10.1007/s00213-013-3161-2

    CAS  Article  Google Scholar 

  • Haller J, Aliczki M, Pelczer KG, Spitzer K, Balogh Z, Kantor S (2014) Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice. Psychopharmacology (Berl) 231:593–601. doi:10.1007/s00213-013-3273-8

    CAS  Article  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–83

    CAS  PubMed  Google Scholar 

  • Hill MN, Gorzalka BB (2009) The endocannabinoid system and the treatment of mood and anxiety disorders. CNS Neurol Disord Drug Targets 8:451–8

    CAS  Article  PubMed  Google Scholar 

  • John CS, Currie PJ (2012) N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze. Behav Brain Res 233:382–8. doi:10.1016/j.bbr.2012.05.025

    CAS  Article  PubMed  Google Scholar 

  • Kamprath K, Romo-Parra H, Haring M, Gaburro S, Doengi M, Lutz B, Pape HC (2011) Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology 36:652–63. doi:10.1038/npp.2010.196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Klugmann M, Goepfrich A, Friemel CM, Schneider M (2011) AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior, and emotional reactivity. Front Behav Neurosci 5:37. doi:10.3389/fnbeh.2011.00037

    Article  PubMed  PubMed Central  Google Scholar 

  • Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MA, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–35

    CAS  Article  PubMed  Google Scholar 

  • Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–21. doi:10.1016/j.yfrne.2010.04.001

    CAS  Article  PubMed  Google Scholar 

  • Lomazzo E, Bindila L, Remmers F, Lerner R, Schwitter C, Hoheisel U, Lutz B (2015) Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology 40:488–501. doi:10.1038/npp.2014.198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75

    CAS  PubMed  Google Scholar 

  • Marco EM, Viveros MP (2009) The critical role of the endocannabinoid system in emotional homeostasis: avoiding excess and deficiencies. Mini Rev Med Chem 9:1407–15

    CAS  Article  PubMed  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–4

    CAS  Article  PubMed  Google Scholar 

  • McLaughlin RJ, Hill MN, Bambico FR, Stuhr KL, Gobbi G, Hillard CJ, Gorzalka BB (2012) Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. Eur Neuropsychopharmacol 22:664–71

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Metna-Laurent M, Soria-Gomez E, Verrier D, Conforzi M, Jego P, Lafenetre P, Marsicano G (2012) Bimodal control of fear-coping strategies by CB(1) cannabinoid receptors. J Neurosci 32:7109–18

    CAS  Article  PubMed  Google Scholar 

  • Moreira FA, Lutz B (2008) The endocannabinoid system: emotion, learning and addiction. Addict Biol 13:196–212. doi:10.1111/j.1369-1600.2008.00104.x

    CAS  Article  PubMed  Google Scholar 

  • Moreira FA, Wotjak CT (2010) Cannabinoids and anxiety. Curr Top Behav Neurosci 2:429–50

    Article  PubMed  Google Scholar 

  • Moreira FA, Aguiar DC, Terzian AL, Guimaraes FS, Wotjak CT (2012) Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin? Neuroscience 204:186–92. doi:10.1016/j.neuroscience.2011.08.046

    CAS  Article  PubMed  Google Scholar 

  • Morena M, Campolongo P (2014) The endocannabinoid system: an emotional buffer in the modulation of memory function. Neurobiol Learn Mem 112:30–43. doi:10.1016/j.nlm.2013.12.010

    CAS  Article  PubMed  Google Scholar 

  • Munguba H, Cabral A, Leao AH, Barbosa FF, Izidio GS, Ribeiro AM, Silva RH (2011) Pre-training anandamide infusion within the basolateral amygdala impairs plus-maze discriminative avoidance task in rats. Neurobiol Learn Mem 95:527–33. doi:10.1016/j.nlm.2011.03.006

    CAS  Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–67

    CAS  Article  PubMed  Google Scholar 

  • Pertwee RG (2012) Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 367:3353–63. doi:10.1098/rstb.2011.0381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pucheu S, Consoli SM, D’Auzac C, Francais P, Issad B (2004) Do health causal attributions and coping strategies act as moderators of quality of life in peritoneal dialysis patients? J Psychosom Res 56:317–22. doi:10.1016/s0022-3999(03)00080-1

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Johnson NJ (1995) Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol Biochem Behav 52:297–303

    CAS  Article  PubMed  Google Scholar 

  • Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790–801. doi:10.1038/sj.bjp.0705467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rubino T, Guidali C, Vigano D, Realini N, Valenti M, Massi P, Parolaro D (2008a) CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 54:151–60

    CAS  Article  PubMed  Google Scholar 

  • Rubino T, Realini N, Castiglioni C, Guidali C, Vigano D, Marras E, Petrosino S, Perletti G, Maccarrone M, Di Marzo V, Parolaro D (2008b) Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb Cortex 18:1292–301

    CAS  Article  PubMed  Google Scholar 

  • Ruehle S, Rey AA, Remmers F, Lutz B (2012) The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol 26:23–39

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu QS, Lichtman AH, Cravatt BF (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13:1113–9. doi:10.1038/nn.2616

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190. doi:10.1016/j.pharmthera.2014.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Starowicz K, Przewlocka B (2012) Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. Philos Trans R Soc Lond B Biol Sci 367:3286–99. doi:10.1098/rstb.2011.0392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tambaro S, Bortolato M (2012) Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat CNS Drug Discov 7:25–40

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Thomas EA, Cravatt BF, Danielson PE, Gilula NB, Sutcliffe JG (1997) Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J Neurosci Res 50:1047–52

    CAS  Article  PubMed  Google Scholar 

  • Tiemensma J, Kaptein AA, Pereira AM, Smit JW, Romijn JA, Biermasz NR (2011) Coping strategies in patients after treatment for functioning or nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 96:964–71. doi:10.1210/jc.2010-2490

    CAS  Article  PubMed  Google Scholar 

  • Tsou K, Nogueron MI, Muthian S, Sanudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM (1998) Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 254:137–40

    CAS  Article  PubMed  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–42. doi:10.1016/j.pbb.2005.01.029

    CAS  Article  PubMed  Google Scholar 

  • Westerhuis W, Zijlmans M, Fischer K, van Andel J, Leijten FS (2011) Coping style and quality of life in patients with epilepsy: a cross-sectional study. J Neurol 258:37–43. doi:10.1007/s00415-010-5677-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S (2011) Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 5:57. doi:10.3389/fnbeh.2011.00057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors dedicate this paper to the memory of Steven R. Goldberg, an eminent scientist and good friend, who played an important role in shaping the coping concept of endocannabinoid action and in designing the studies presented here. Funding for this study was provided by the National Research, Development and Innovation Office (NKFIH) grants No. PD112787 (to M.A.) and K101645 (to J.H.), János Bolyai Research Scholarship of the Hungarian Academy of Sciences (M.A.), European Research Council grant No. 294313-SERRACO (to J.H.), and the Intramural Research Program of the National Institute on Drug Abuse, NIH, DHHS (to S.R.G.). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozsef Haller.

Additional information

Mano Aliczki and Istvan Barna contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliczki, M., Barna, I., Till, I. et al. The effects anandamide signaling in the prelimbic cortex and basolateral amygdala on coping with environmental stimuli in rats. Psychopharmacology 233, 1889–1899 (2016). https://doi.org/10.1007/s00213-016-4219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4219-8

Keywords

  • Amygdala
  • Basolateral amygdala
  • Anandamide
  • Coping
  • Emotional homeostasis
  • Medial prefrontal cortex
  • Prelimbic cortex
  • URB597