Skip to main content

Conditioned stimuli’s role in relapse: preclinical research on Pavlovian-Instrumental-Transfer

Abstract

Rationale and objective

Pavlovian learning is central to many theories of addiction. In these theories, stimuli paired with drug ingestion become conditioned stimuli (CS) and subsequently elicit drug-seeking and drug-taking. However, in most relevant studies, Pavlovian and instrumental learning are confounded. This confound may be avoided in Pavlovian-Instrumental-Transfer (PIT) procedures. In PIT, Pavlovian and instrumental learning are established separately and then combined. In order to better understand the role of CSs in addiction, we review the relevant studies using PIT.

Findings

We identified seven articles examining PIT effects of ethanol- or cocaine-paired CSs. Under at least one condition, six of these articles reported CS-elicited increases in responding previously maintained by drug. However, the only study using the optimal control condition failed to find a CS-elicited increase. Two studies examining CS specificity found the CS also increased responding maintained by a different reinforcer. Two studies examined if CSs elicit increases in actual drug-taking. Both failed to find CS-elicited increases, i.e., no study shows CS-elicited increases in actual drug-taking. Further, CS-elicited increases in extinguished responding are short-lived.

Conclusions

These findings are not entirely consistent with Pavlovian learning playing a central role in addiction. However, design issues can explain most of these inconsistencies. Studies without these design issues are needed. Additionally, existing theories hypothesize drug-paired CSs increase drug-taking by increasing motivation, by eliciting conditioned responses that make drug-seeking more probable, or by a combination of these. Work distinguishing between these mechanisms would also be useful.

This is a preview of subscription content, access via your institution.

References

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    CAS  Article  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513

    CAS  Article  PubMed  Google Scholar 

  • Colwill RM, Rescorla RA (1988) Associations between the discriminative stimulus and the reinforcer in instrumental learning. J Exp Psychol Anim Behav Process 14:155–164

    Article  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on general and outcome-specific forms of Pavlovian-Instrumental-Transfer. J Neurosci 25(4):962–970

    CAS  Article  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci 311(13):11786–11794

    Article  Google Scholar 

  • Corbit LH, Janak PH (2007) Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcohol Clin Exp Res 31(5):766–774

    CAS  Article  PubMed  Google Scholar 

  • Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci 363(1507):3233–3243

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham CL, Niehus DR (1989) Effects of ingestion contingent hypothermia on ethanol self-administration. Alcohol 6:377–380

    CAS  Article  PubMed  Google Scholar 

  • Cunningham CL, Patel P (2007) Rapid induction of Pavlovian approach to an ethanol-paired visual cue in mice. Psychopharm 192(2):231–241

    CAS  Article  Google Scholar 

  • Davis WM, Smith SG (1976) Role of conditioned reinforcers in the initiation, maintenance and extinction of drug-seeking behavior. Pavlovian J Bio Sci 11(4):222–236

    CAS  Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharm 75:134–143

    Article  Google Scholar 

  • Eikelboom R, Stewart J (1982) Conditioning of drug-induced physiological responses. Psych Rev 89(5):507–528

    CAS  Article  Google Scholar 

  • Ellison DC, Konorski J (1964) Separation of the salivary and motor responses in instrumental conditioning. Science 146:1071–1072

    CAS  Article  PubMed  Google Scholar 

  • Estes WK (1943) Discriminative conditioning. I. A discriminative property of conditioned anticipation. J Exp Psychol 32(2):150–155

    Article  Google Scholar 

  • Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharm 56(Suppl 1):139–148

    CAS  Article  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469(7328):53–57

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ginsburg BC, Lamb RJ (2013a) Shifts in discriminative control with increasing periods of recovery in the rat. Alcohol Clin Exp Res 37(6):1033–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginsburg BC, Lamb RJ (2013b) Reinforcement of alternative behavior as a model of recovery and relapse in the rat. Behav Proc 94:60–66

    Article  Google Scholar 

  • Ginsburg BC, Koek W, Javors MA, Lamb RJ (2005) Effects of fluvoxamine on a multiple schedule of ethanol- and food-maintained behavior in two rat strains. Psychopharm 180(2):249–257

    CAS  Article  Google Scholar 

  • Glasner SV, Overmier JB, Balleine BW (2005) The role of Pavlovian cues in alcohol seeking in dependent and nondependent rats. J Stud Alcohol 66(1):53–61

    Article  PubMed  Google Scholar 

  • Goldberg SR, Woods JH, Schuster CR (1969) Morphine: conditioned increases in self-administration in rhesus monkeys. Science 166:1306–1307

    CAS  Article  PubMed  Google Scholar 

  • Goldberg SR, Morse WH, Goldberg DM (1976) Behavior maintained under a second-order schedule of intramuscular injection of morphine or cocaine in rhesus monkeys. J Pharmacol Exp Ther 199(1):278–286

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Spealman RD, Kelleher RT (1979) Enhancement of drug-seeking behavior by environmental stimuli associated with cocaine or morphine injections. Neuropharmacol 18:1015–1017

    CAS  Article  Google Scholar 

  • Goldberg SR, Schindler CW, Lamb RJ (1990) Second-order schedules and the analysis of human drug-seeking behavior. Drug Devel Res 20:217–229

    CAS  Article  Google Scholar 

  • Griffiths RR, Bigelow GE, Henningfield JE (1980) Similarities in animal and human drug-taking behavior. Advances in Substance Abuse 1:1–90

    Google Scholar 

  • Herling S, Woods JH (1980) Chlorpromazine effects on cocaine-reinforced responding in rhesus monkeys: reciprocal modification on rate-altering effects of drugs. J Pharmacol Exp Ther 214(3):354–361

    CAS  PubMed  Google Scholar 

  • Heyman GM (2009) Addiction: a disorder of choice. Harvard University Press, Cambridge MA

    Google Scholar 

  • Hogarth L, Balleine BW, Corbit LH, Killcross S (2013) Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Ann NY Acad Sci 1282:12–24

    CAS  Article  PubMed  Google Scholar 

  • Holman JG, Mackintosh NJ (1981) The control of appetitive instrumental responding does not depend on classical conditioning to the discriminative stimulus. Q J Exp Psychol 33B:21–31

    Article  Google Scholar 

  • Kearns DN, Weiss SJ (2004) Sign-tracking (autoshaping) in rats: a comparison of cocaine and food as unconditioned stimuli. Learn Behav 32(4):463–476

    Article  PubMed  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Koob GF, Stinus L, Le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 13(2-3):135–140

    CAS  Article  PubMed  Google Scholar 

  • Krank MD (2003) Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration. Alcohol Clin Exp Res 27(10):1592–1598

    CAS  Article  PubMed  Google Scholar 

  • Krank MD, O’Neill S, Squarey K, Jacob J (2008) Goal- and signal-directed incentive: conditioned approach, seeking, and consumption established with unsweetened alcohol in rats. Psychopharm 196(3):397–405

    CAS  Article  Google Scholar 

  • Kruzich PJ, Congleton KM, See RE (2001) Conditioned reinstatement of drug-seeking behavior with a discrete compound stimulus classically conditioned with intravenous cocaine. Behav Neurosci 115(5):1086–1092

    CAS  Article  PubMed  Google Scholar 

  • Lamb RJ, Daws LC (2013) Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity. Genes Brain Behav 12(7):741–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb RJ, Jarbe TUC (2001) Effects of fluvoxamine on ethanol-reinforced behavior in the rat. J Pharmacol Exp Ther 297(3):1001–1009

    CAS  PubMed  Google Scholar 

  • LeBlanc KH, Ostlund SB, Maidment NT (2012) Pavlovian-to-instrumental transfer in cocaine seeking rats. Behav Neurosci 126(5):681–689

    Article  PubMed  PubMed Central  Google Scholar 

  • Leri F, Zhou Y, Goddard B, Levy A, Jacklin D, Kreek MJ (2009) Steady-state methadone blocks cocaine seeking and cocaine-induced gene expression alterations in the rat brain. Eur Neuropsychopharm 19(4):238–249

    CAS  Article  Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Oxford University Press, New York

    Google Scholar 

  • McSweeney FK, Murphy ES, Kowal BP (2005) Regulation of drug taking by sensitization and habituation. Exp Clin Psychopharm 13(3):163–184

    CAS  Article  Google Scholar 

  • Michael J (1982) Distinguishing between discriminative and motivational functions of stimuli. J Exp Anal Behav 37(1):149–155

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Milton AL, Schramm MJ, Wawrzynski JR, Gore F, Oikonomou-Mpegeti F, Wang NQ, Samuel D, Economidou D, Everitt BJ (2012) Antagonism at NMDA receptors, but not beta-adrenergic receptors, disrupts the reconsolidation of Pavlovian conditioned approach and instrumental transfer for ethanol-associated conditioned stimuli. Psychopharm 219(3):751–761

    CAS  Article  Google Scholar 

  • Murphy ES, McSweeney FK, Kowal BP, McDonald J, Wiediger RV (2006) Spontaneous recovery and dishabituation of ethanol-reinforced responding in alcohol-preferring rats. Exp Clin Psychopharm 14(4):471–482

    CAS  Article  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (1996) Cocaine self-administration increased by compounding discriminative stimuli. Psychopharm 125(3):202–208

    CAS  Article  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (2000) Effects of compounding drug-related stimuli: escalation of heroin self-administration. J Exp Anal Behav 73(2):211–224

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Panlilio LV, Thorndike EB, Schindler CW (2003) Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharm 168:229–235

    CAS  Article  Google Scholar 

  • Perry CJ, Zbukvic I, Kim JH, Lawrence AJ (2014) Role of cues and contexts on drug-seeking behavior. Br J Pharmacol 171:4636–4672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Peters J, de Vries TJ (2014) Pavlovian conditioned approach, extinction, and spontaneous recovery to an audiovisual cue paired with intravenous heroin infusion. Psychopharm 231:447–453

    CAS  Article  Google Scholar 

  • Rescorla RA (1967) Pavlovian conditioning and its proper control procedures. Psychol Rev 74(1):71–80

    CAS  Article  PubMed  Google Scholar 

  • Rescorla RA (1994) Control of instrumental performance by Pavlovian and instrumental stimuli. J Exp Psycol Animal Behav Proc 20(1):44–50

    CAS  Article  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving—an incentive-sensitization theory of addiction. Brain Res Rev 18(3):247–291

    CAS  Article  PubMed  Google Scholar 

  • Schindler CW, Panlilio LV, Goldberg SR (2002) Second-order schedules of drug self-administration in animals. Psychopharm 163(3-4):327–344

    CAS  Article  Google Scholar 

  • Schuster CR (1976) Drugs as reinforcers in monkey and man. Pharmacol Rev 27(4):511–521

    Google Scholar 

  • Shabani S, McKinnon CS, Reed C, Cunningham CL, Phillips TJ (2011) Sensitivity to rewarding or aversive effects of methamphetamine determines methamphetamine intake. Genes Brain Behav 10:625–636

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Shahan TA (2002) The observing-response procedure: a novel method to study drug-associated conditioned reinforcement. Exp Clin Psychopharm 10(1):3–9

    Article  Google Scholar 

  • Slikker W Jr, Brocco MJ, Killam KF Jr (1984) Reinstatement of responding maintained by cocaine or thiamylal. J Pharmacol Exp Ther 228(1):43–52

    CAS  PubMed  Google Scholar 

  • Spealman RD, Kelleher RT (1979) Behavioral effects of self-administered cocaine: responding maintained alternately by cocaine and electric shock in squirrel monkeys. J Pharmacol Exp Ther 210(2):206–214

    CAS  PubMed  Google Scholar 

  • Srey CS, Maddux J-MH, Chaudhri N (2015) The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking. Front Behav Neurosci 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91(2):251–268

    CAS  Article  PubMed  Google Scholar 

  • Todd TP, Vurbic D, Bouton ME (2014) Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiol Learn Mem 108:52–64

    Article  PubMed  Google Scholar 

  • Tomie A (1995) CAM—an animal learning model of excessive and compulsive implement-assisted drug-taking in humans. Clin Psychol Rev 15(3):145–167

    Article  Google Scholar 

  • Uslaner JM, Acerbo MJ, Jones SA, Robinson TE (2006) The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav Brain Res 169:320–324

    CAS  Article  PubMed  Google Scholar 

  • Vuchinich RE, Tucker JA (1988) Contributions from behavioral theories of choice to an analysis of alcohol abuse. J Abnorm Psychol 97(2):181–195

    CAS  Article  PubMed  Google Scholar 

  • Weiss SJ, Schindler CW (1987) The composite-stimulus analysis and the quantal nature of stimulus-control: response and incentive factors. Psychol Rec 37(2):177–191

    Google Scholar 

  • Wikler A (1948) Recent progress in research on the neurophysiologic basis of morphine addiction. Am J Psychiatry 105(5):329–338

    CAS  Article  PubMed  Google Scholar 

  • Woods JH, Winger GD (2002) Observing responses maintained by stimuli associated with cocaine or remifentanil reinforcement in rhesus monkeys. Psychopharm 163(3-4):345–351

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Lamb.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamb, R.J., Schindler, C.W. & Pinkston, J.W. Conditioned stimuli’s role in relapse: preclinical research on Pavlovian-Instrumental-Transfer. Psychopharmacology 233, 1933–1944 (2016). https://doi.org/10.1007/s00213-016-4216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4216-y

Keywords

  • Conditioned Response
  • Sign-Tracking
  • Goal-Tracking
  • Motivation
  • Alcoholism
  • self-administration
  • discriminative stimulus
  • conditioned reinforcement
  • conditioned approach
  • incentive salience