Skip to main content

Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders

Abstract

Background

The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems.

Objectives

A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine.

Highlights

The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD.

Conclusions

The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abraham AD, Neve KA, Lattal KM (2014) Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 108:65–77

    PubMed  Article  Google Scholar 

  • Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M (2016) Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 101:490–505

    CAS  PubMed  Article  Google Scholar 

  • Addicott MA (2014) Caffeine use disorder: a review of the evidence and future implications. Curr Addict Rep 1:186–192

    PubMed  PubMed Central  Article  Google Scholar 

  • Addicott MA, Laurienti PJ (2009) A comparison of the effects of caffeine following abstinence and normal caffeine use. Psychopharmacology 207:423–431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders. 5th ed

  • Andén NE, Jackson DM (1975) Locomotor activity stimulation in rats produced by dopamine in the nucleus accumbens: potentiation by caffeine. J Pharm Pharmacol 27:666–670

    PubMed  Article  Google Scholar 

  • Antonini A, Vontobel P, Psylla M, Günther I, Maguire PR, Missimer J, Leenders KL (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson's disease. Arch Neurol 52:1183–1190

    CAS  PubMed  Article  Google Scholar 

  • Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, Panlilio L, Müller CE, Goldberg SR, Ferré S (2005) A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology 183:154–162

    CAS  PubMed  Article  Google Scholar 

  • Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R (2011) Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 132:280–299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34:972–986

    CAS  PubMed  Article  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    CAS  PubMed  Article  Google Scholar 

  • Bhattacharjee AK, Lang L, Jacobson O, Shinkre B, Ma Y, Niu G, Trenkle WC, Jacobson KA, Chen X, Kiesewetter DO (2011) Striatal adenosine A(2A) receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [(18)F]-MRS5425. Nucl Med Biol 38:897–906

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci U S A 112:E3609–E3618

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Borycz J, Pereira MF, Melani A, Rodrigues RJ, Köfalvi A, Panlilio L, Pedata F, Goldberg SR, Cunha RA, Ferré S (2007) Differential glutamate-dependent and glutamate-independent adenosine A1 receptor-mediated modulation of dopamine release in different striatal compartments. J Neurochem 101:355–363

    CAS  PubMed  Article  Google Scholar 

  • Brianna Sheppard A, Gross SC, Pavelka SA, Hall MJ, Palmatier MI (2012) Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 124:216–222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol, Biochem Behav 38:513–517

    CAS  Article  Google Scholar 

  • Brooks AM, Berns GS (2013) Aversive stimuli and loss in the mesocorticolimbic dopamine system. Trends Cogn Sci 17:281–286

    PubMed  Article  Google Scholar 

  • Budney AJ, Lee DC, Juliano LM (2015) Evaluating the validity of caffeine use disorder. Curr Psychiatry Rep 17:74

    PubMed  Article  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196:326–328

    CAS  PubMed  Article  Google Scholar 

  • Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T (2004) Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain 127:1075–1084

    PubMed  Article  Google Scholar 

  • Casas M, Ferré S, Cobos A, Grau JM, Jané F (1989) Relationship between rotational behaviour induced by apomorphine and caffeine in rats with unilateral lesion of the nigrostriatal pathway. Neuropharmacology 28:407–409

    CAS  PubMed  Article  Google Scholar 

  • Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F (2000) Methylxanthines reverse the adipsic and aphagic syndrome induced by bilateral 6-hydroxydopamine lesions of the nigrostriatal pathway in rats. Pharmacol, Biochem Behav 66:257–263

    CAS  Article  Google Scholar 

  • Cauli O, Morelli M (2002) Subchronic caffeine administration sensitizes rats to the motor-activating effects of dopamine D(1) and D(2) receptor agonists. Psychopharmacology 162:246–254

    CAS  PubMed  Article  Google Scholar 

  • Cauli O, Pinna A, Valentini V, Morelli M (2003) Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine release. Neuropsychopharmacology 28:1752–1759

    CAS  PubMed  Article  Google Scholar 

  • Cauli O, Pinna A, Morelli M (2005) Subchronic intermittent caffeine administration to unilaterally 6-hydroxydopamine-lesioned rats sensitizes turning behaviour in response to dopamine D(1) but not D(2) receptor agonists. Behav Pharmacol 16:621–626

    CAS  PubMed  Article  Google Scholar 

  • Chambers L, Mobini S, Yeomans MR (2007) Caffeine deprivation state modulates expression of acquired liking for caffeine-paired flavours. Q J Exp Psychol 60:1356–1366

    Article  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    CAS  PubMed  Article  Google Scholar 

  • Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96

    CAS  PubMed  Article  Google Scholar 

  • Concas A, Cuccheddu T, Floris S, Mascia MP, Biggio G (1994) 2-Chloro-N6-cyclopentyladenosine (CCPA), an adenosine A1 receptor agonist, suppresses ethanol withdrawal syndrome in rats. Alcohol Alcohol 29:261–264

    CAS  PubMed  Google Scholar 

  • Conlay LA, Conant JA, deBros F, Wurtman R (1997) Caffeine alters plasma adenosine levels. Nature 389:136

    CAS  PubMed  Article  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197:596–598

    CAS  PubMed  Article  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    CAS  PubMed  Article  Google Scholar 

  • Dutertre S, Becker CM, Betz H (2012) Inhibitory glycine receptors: an update. J Biol Chem 287:40216–40223

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415

    CAS  PubMed  Article  Google Scholar 

  • Elmenhorst D, Basheer R, McCarley RW, Bauer A (2009) Sleep deprivation increases A(1) adenosine receptor density in the rat brain. Brain Res 1258:53–58

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fedorchak PM, Mesita J, Plater SA, Brougham K (2002) Caffeine-reinforced conditioned flavor preferences in rats. Behav Neurosci 116:334–346

    CAS  PubMed  Article  Google Scholar 

  • Fenu S, Morelli M (1998) Motor stimulant effects of caffeine in 6-hydroxydopamine-lesioned rats are dependent on previous stimulation of dopamine receptors: a different role of D1 and D2 receptors. Eur J Neurosci 10:1878–1884

    CAS  PubMed  Article  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    PubMed  Article  CAS  Google Scholar 

  • Ferré S (2010) Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis 20(Suppl 1):S35–S49

    PubMed  Google Scholar 

  • Ferré S (2015) The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci 36:145–152

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ferré S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 594:124–130

    PubMed  Article  Google Scholar 

  • Ferré S, O'Brien MC (2011) Alcohol and caffeine: the perfect storm. J Caffeine Res 1:153–162

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ferré S, Herrera-Marschitz M, Grabowska-Andén M, Ungerstedt U, Casas M, Andén NE (1991a) Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit dopamine D2-mediated behaviour in short-term reserpinized mice. Eur J Pharmacol 192:25–30

    PubMed  Article  Google Scholar 

  • Ferré S, Herrera-Marschitz M, Grabowska-Andén M, Casas M, Ungerstedt U, Andén NE (1991b) Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice. Eur J Pharmacol 192:31–37

    PubMed  Article  Google Scholar 

  • Ferré S, Rubio A, Fuxe K (1991c) Stimulation of adenosine A2 receptors induces catalepsy. Neurosci Lett 130:162–164

    PubMed  Article  Google Scholar 

  • Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88:7238–7241

    PubMed  PubMed Central  Article  Google Scholar 

  • Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512

    PubMed  Article  Google Scholar 

  • Ferré S, O'Connor WT, Fuxe K, Ungerstedt U (1993) The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406

    PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    PubMed  Article  Google Scholar 

  • Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism Relat Disord 7:235–241

    PubMed  Article  Google Scholar 

  • Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446

    PubMed  Article  CAS  Google Scholar 

  • Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2015) Allosteric mechanisms within the adenosine A(2A)-dopamine D(2) receptor heterotetramer. Neuropharmacology. doi:10.1016/j.neuropharm.2015.05.028

    PubMed  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    CAS  PubMed  Article  Google Scholar 

  • Fillmore MT (2003) Alcohol tolerance in humans is enhanced by prior caffeine antagonism of alcohol-induced impairment. Exp Clin Psychopharmacol 11:9–17

    PubMed  Article  Google Scholar 

  • Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105:110–113

    PubMed  Article  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ungerstedt U (1974) Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med Biol 52:48–54

    CAS  PubMed  Google Scholar 

  • Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol, Biochem Behav 57:533–541

    CAS  Article  Google Scholar 

  • Garrett BE, Holtzman SG (1995a) Does adenosine receptor blockade mediate caffeine-induced rotational behavior? J Pharmacol Exp Ther 274:207–214

    CAS  PubMed  Google Scholar 

  • Garrett BE, Holtzman SG (1995b) The effects of dopamine agonists on rotational behavior in non-tolerant and caffeine-tolerant rats. Behav Pharmacol 6:843–851

    CAS  PubMed  Article  Google Scholar 

  • Gasior M, Jaszyna M, Peters J, Goldberg SR (2000) Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose. J Pharmacol Exp Ther 295:1101–1111

    CAS  PubMed  Google Scholar 

  • Gatch MB, Wallis CJ, Lal H (1999) The effects of adenosine ligands R-PIA and CPT on ethanol withdrawal. Alcohol 19:9–14

    CAS  PubMed  Article  Google Scholar 

  • Gauvin DV, Criado JR, Moore KR, Holloway FA (1990) Potentiation of cocaine's discriminative effects by caffeine: a time-effect analysis. Pharmacol, Biochem Behav 36:195–197

    CAS  Article  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    CAS  PubMed  Google Scholar 

  • Giménez-Llort L, Martínez E, Ferré S (1995) Dopamine-independent and adenosine-dependent mechanisms involved in the effects of N-methyl-D-aspartate on motor activity in mice. Eur J Pharmacol 275:171–177

    PubMed  Article  Google Scholar 

  • Glickman SE, Schiff BB (1967) A biological theory of reinforcement. Psychol Rev 74:81–109

    CAS  PubMed  Article  Google Scholar 

  • Górska AM, Gołembiowska K (2015) The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum. Neurotox Res 27:229–245

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Griffiths RR, Woodson PP (1988) Reinforcing properties of caffeine: studies in humans and laboratory animals. Pharmacol, Biochem Behav 29:419–427

    CAS  Article  Google Scholar 

  • Guitart X, Navarro G, Moreno E, Yano H, Cai NS, Sánchez-Soto M, Kumar-Barodia S, Naidu YT, Mallol J, Cortés A, Lluís C, Canela EI, Casadó V, McCormick PJ, Ferré S (2014) Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer. Mol Pharmacol 86:417–429

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Halldner L, Adén U, Dahlberg V, Johansson B, Ledent C, Fredholm BB (2004) The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: a study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 46:1008–1017

    CAS  PubMed  Article  Google Scholar 

  • Hasin DS, O'Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, Compton WM, Crowley T, Ling W, Petry NM, Schuckit M, Grant BF (2013) DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 70:834–851

    Article  Google Scholar 

  • Herrera-Marschitz M, Forster C, Ungerstedt U (1985) Rotational behaviour elicited by intracerebral injections of apomorphine and pergolide in 6 hydroxy-dopamine-lesioned rats. I: Comparison between systemic and intrastriatal injections. Acta Physiol Scand 125:519–527

    CAS  PubMed  Article  Google Scholar 

  • Herrera-Marschitz M, Casas M, Ungerstedt U (1988) Caffeine produces contralateral rotation in rats with unilateral dopamine denervation: comparisons with apomorphine-induced responses. Psychopharmacology 94:38–45

    CAS  PubMed  Article  Google Scholar 

  • Hilbert ML, May CE, Griffin WC 3rd (2013) Conditioned reinforcement and locomotor activating effects of caffeine and ethanol combinations in mice. Pharmacol, Biochem Behav 110:168–173

    CAS  Article  Google Scholar 

  • Hines DJ, Haydon PG (2014) Astrocytic adenosine: from synapses to psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 369:20130594

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Holly EN, Miczek KA (2016) Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233:163–186

    CAS  PubMed  Article  Google Scholar 

  • Holtzman SG, Finn IB (1988) Tolerance to behavioral effects of caffeine in rats. Pharmacol, Biochem Behav 29:411–418

    CAS  Article  Google Scholar 

  • Horger BA, Wellman PJ, Morien A, Davies BT, Schenk S (1991) Caffeine exposure sensitizes rats to the reinforcing effects of cocaine. Neuroreport 2:53–56

    CAS  PubMed  Article  Google Scholar 

  • Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Howell LL, Landrum AM (1997) Effects of chronic caffeine administration on respiration and schedule-controlled behavior in rhesus monkeys. J Pharmacol Exp Ther 283:190–199

    CAS  PubMed  Google Scholar 

  • Hsu CW, Chen CY, Wang CS, Chiu TH (2009) Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacology 204:313–325

    CAS  PubMed  Article  Google Scholar 

  • Hsu CW, Wang CS, Chiu TH (2010) Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice. J Biomed Sci 17:4

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    CAS  PubMed  Article  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson's disease. Neurosci Lett 291:54–58

    CAS  PubMed  Article  Google Scholar 

  • Ichise M, Kim YJ, Ballinger JR, Vines D, Erami SS, Tanaka F, Lang AE (1999) SPECT imaging of pre- and postsynaptic dopaminergic alterations in L-dopa-untreated PD. Neurology 52:1206–1214

    CAS  PubMed  Article  Google Scholar 

  • Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jain R, Holtzman SG (2005) Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists. Brain Res Bull 65:415–421

    CAS  PubMed  Article  Google Scholar 

  • James JE, Keane MA (2007) Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal. Hum Psychopharmacol 22:549–558

    PubMed  Article  Google Scholar 

  • James JE, Rogers PJ (2005) Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology 182:1–8

    CAS  PubMed  Article  Google Scholar 

  • Jaszyna M, Gasior M, Shoaib M, Yasar S, Goldberg SR (1998) Behavioral effects of nicotine, amphetamine and cocaine under a fixed-interval schedule of food reinforcement in rats chronically exposed to caffeine. Psychopharmacology 140:257–271

    CAS  PubMed  Article  Google Scholar 

  • Juliano LM, Evatt DP, Richards BD, Griffiths RR (2012) Characterization of individuals seeking treatment for caffeine dependence. Psychol Addict Behav 26:948–954

    PubMed  PubMed Central  Article  Google Scholar 

  • Justinova Z, Ferre S, Segal PN, Antoniou K, Solinas M, Pappas LA, Highkin JL, Hockemeyer J, Munzar P, Goldberg SR (2003) Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J Pharmacol Exp Ther 307:977–986

    CAS  PubMed  Article  Google Scholar 

  • Justinova Z, Ferré S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B (2009) Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology 203:355–367

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    CAS  PubMed  Article  Google Scholar 

  • Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J (1994) KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268

    CAS  PubMed  Article  Google Scholar 

  • Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291

    CAS  PubMed  Article  Google Scholar 

  • Kendler KS, Myers JO, Gardner C (2006) Caffeine intake, toxicity and dependence and lifetime risk for psychiatric and substance use disorders: an epidemiologic and co-twin control analysis. Psychol Med 36:1717–1725

    PubMed  Article  Google Scholar 

  • Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4 methylenedioxymethamphetamine ('ecstasy') in mouse brain. Neurotox Res 17:435–439

    CAS  PubMed  Article  Google Scholar 

  • Kim HF, Hikosaka O (2015) Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138:1776–1800

    PubMed  Article  Google Scholar 

  • Kim DS, Palmiter RD (2003) Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc Natl Acad Sci U S A 100:1346–1351

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kim Y, Bolortuya Y, Chen L, Basheer R, McCarley RW, Strecker RE (2012) Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system. Sleep 35:861–869

    PubMed  PubMed Central  Article  Google Scholar 

  • Klawans HL, Moses H 3rd, Beaulieu DM (1974) The influence of caffeine on d-amphetamine- and apomorphine-induced stereotyped behavior. Life Sci 14:1493–1500

    CAS  PubMed  Article  Google Scholar 

  • Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, Pieprzyk M, Cymerman IA, Werka T, Sheng M, Maren S, Jaworski J, Kaczmarek L (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 109:17093–17098

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–359

    CAS  PubMed  Article  Google Scholar 

  • Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31:10067–10075

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lazenka MF, Moeller FG, Negus SS (2015) Effects of caffeine and its metabolite paraxanthine on intracranial self-stimulation in male rats. Exp Clin Psychopharmacol 23:71–80

    PubMed  PubMed Central  Article  Google Scholar 

  • Lehner KR, Baumann MH (2013) Psychoactive 'bath salts': compounds, mechanisms, and toxicities. Neuropsychopharmacology 38:243–244

    PubMed  PubMed Central  Article  Google Scholar 

  • Leviton A (1992) Behavioral correlates of caffeine consumption by children. Clin Pediatr 31:742–750

    CAS  Article  Google Scholar 

  • Ljungberg T, Ungerstedt U (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp Neurol 53:585–600

    CAS  PubMed  Article  Google Scholar 

  • López-Hill X, Prieto JP, Meikle MN, Urbanavicius J, Abin-Carriquiry JA, Prunell G, Umpiérrez E, Scorza MC (2011) Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 221:134–141

    PubMed  Article  CAS  Google Scholar 

  • Marczinski CA, Fillmore MT, Henges AL, Ramsey MA, Young CR (2013) Mixing an energy drink with an alcoholic beverage increases motivation for more alcohol in college students. Alcohol Clin Exp Res 37:276–283

    PubMed  PubMed Central  Article  Google Scholar 

  • Marin MT, Zancheta R, Paro AH, Possi AP, Cruz FC, Planeta CS (2011) Comparison of caffeine-induced locomotor activity between adolescent and adult rats. Eur J Pharmacol 660:363–367

    CAS  PubMed  Article  Google Scholar 

  • Marshall JF, Turner BH, Teitelbaum P (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174:523–525

    CAS  PubMed  Article  Google Scholar 

  • Marshall JF, Berrios N, Sawyer S (1980) Neostriatal dopamine and sensory inattention. J Comp Physiol Psychol 94:833–846

    CAS  PubMed  Article  Google Scholar 

  • May CE, Haun HL, Griffin WC 3rd (2015) Sensitization and tolerance following repeated exposure to caffeine and alcohol in mice. Alcohol Clin Exp Res 39:1443–1452

    CAS  PubMed  Article  Google Scholar 

  • McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330

    PubMed  Article  Google Scholar 

  • McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF (2012) Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci 6:137

    PubMed  PubMed Central  Article  Google Scholar 

  • McKetin R, Coen A, Kaye S (2015) A comprehensive review of the effects of mixing caffeinated energy drinks with alcohol. Drug Alcohol Depend 151:15–30

    CAS  PubMed  Article  Google Scholar 

  • Miller R, Beninger RJ (1991) On the interpretation of asymmetries of posture and locomotion produced with dopamine agonists in animals with unilateral depletion of striatal dopamine. Prog Neurobiol 36:229–256

    CAS  PubMed  Article  Google Scholar 

  • Minor TR, Hanff TC (2015) Adenosine signaling in reserpine-induced depression in rats. Behav Brain Res 286:184–191

    CAS  PubMed  Article  Google Scholar 

  • Misra AL, Vadlamani NL, Pontani RB (1986) Effect of caffeine on cocaine locomotor stimulant activity in rats. Pharmacol, Biochem Behav 24:761–764

    CAS  Article  Google Scholar 

  • Miyashita N, Hikosaka O, Kato M (1995) Visual hemineglect induced by unilateral striatal dopamine deficiency in monkeys. Neuroreport 6:1257–1260

    CAS  PubMed  Article  Google Scholar 

  • Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson's disease. Handb Exp Pharmacol 193:589–615

    CAS  PubMed  Article  Google Scholar 

  • Morikawa H, Morrisett RA (2010) Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 91:235–288

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Müller CE, Ferré S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS. Drug Discov 2:1–21

    Google Scholar 

  • Mumford GK, Holtzman SG (1990) Methylxanthines elevate reinforcement threshold for electrical brain stimulation: role of adenosine receptors and phosphodiesterase inhibition. Brain Res 528:32–38

    CAS  PubMed  Article  Google Scholar 

  • Mumford GK, Holtzman SG (1991) Do adenosinergic substrates mediate methylxanthine effects upon reinforcement thresholds for electrical brain stimulation in the rat? Brain Res 550:172–178

    CAS  PubMed  Article  Google Scholar 

  • Mumford GK, Neill DB, Holtzman SG (1988) Caffeine elevates reinforcement threshold for electrical brain stimulation: tolerance and withdrawal changes. Brain Res 459:163–167

    CAS  PubMed  Article  Google Scholar 

  • Munzar P, Justinova Z, Kutkat SW, Ferré S, Goldberg SR (2002) Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats. Psychopharmacology 161:348–355

    CAS  PubMed  Article  Google Scholar 

  • Myers KP, Izbicki EV (2006) Reinforcing and aversive effects of caffeine measured by flavor preference conditioning in caffeine-naive and caffeine-acclimated rats. Physiol Behav 88:585–596

    CAS  PubMed  Article  Google Scholar 

  • Navarro G, Aguinaga D, Moreno E, Hradsky J, Reddy PP, Cortés A, Mallol J, Casadó V, Mikhaylova M, Kreutz MR, Lluís C, Canela EI, McCormick PJ, Ferré S (2014) Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers. Chem Biol 21:1546–1556

    CAS  PubMed  Article  Google Scholar 

  • Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170

    CAS  PubMed  Article  Google Scholar 

  • Neve KA, Altar CA, Wong CA, Marshall JF (1984) Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: plasticity of neostriatal dopamine receptors after nigrostriatal injury. Brain Res 302:9–18

    CAS  PubMed  Article  Google Scholar 

  • Nikodijević O, Jacobson KA, Daly JW (1993) Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol, Biochem Behav 44:199–216

    Article  Google Scholar 

  • Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (2013) Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci Biobehav Rev 37:2015–2025

    CAS  PubMed  Article  Google Scholar 

  • O'Brien MC, McCoy TP, Rhodes SD, Wagoner A, Wolfson M (2008) Caffeinated cocktails: energy drink consumption, high-risk drinking, and alcohol-related consequences among college students. Acad Emerg Med 15:453–460

    PubMed  Article  Google Scholar 

  • O'Neill CE, LeTendre ML, Bachtell RK (2012) Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 37:1245–1256

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • O'Neill CE, Levis SC, Schreiner DC, Amat J, Maier SF, Bachtell RK (2015) Effects of adolescent caffeine consumption on cocaine sensitivity. Neuropsychopharmacology 40:813–821

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Orrú M, Guitart X, Karcz-Kubicha M, Solinas M, Justinova Z, Barodia SK, Zanoveli J, Cortes A, Lluis C, Casado V, Moeller FG, Ferré S (2013) Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 67:476–484

    PubMed  Article  CAS  Google Scholar 

  • Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35–46

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Panek LM, Swoboda C, Bendlin A, Temple JL (2013) Caffeine increases liking and consumption of novel-flavored yogurt. Psychopharmacology 227:425–436

    CAS  PubMed  Article  Google Scholar 

  • Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62:2068–2077

    CAS  PubMed  Article  Google Scholar 

  • Parkinson FE, Xiong W, Zamzow CR, Chestley T, Mizuno T, Duckworth ML (2009) Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons. J Neurochem 109:562–572

    CAS  PubMed  Article  Google Scholar 

  • Peacock A, Pennay A, Droste N, Bruno R, Lubman DI (2014) 'High' risk? A systematic review of the acute outcomes of mixing alcohol with energy drinks. Addiction 109:1612–1633

    PubMed  Article  Google Scholar 

  • Pereira M, Farrar AM, Hockemeyer J, Müller CE, Salamone JD, Morrell JI (2011) Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology 213:69–79

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pinna A, Fenu S, Morelli M (2001) Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 9:233–238

    Article  Google Scholar 

  • Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M (2002) Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82

    CAS  PubMed  Article  Google Scholar 

  • Pollack AE, Turgeon SM, Fink JS (1997) Apomorphine priming alters the response of striatal outflow pathways to D2 agonist stimulation in 6-hydroxydopamine-lesioned rats. Neuroscience 79:79–93

    CAS  PubMed  Article  Google Scholar 

  • Pollack AE, Dimitrov KD, Drake JD (2010) Prior treatment (priming) with caffeine sensitizes D2-dopamine-mediated contralateral rotational behavior in 6-hydroxydopamine-lesioned rats. Pharmacology 86:73–78

    CAS  PubMed  Article  Google Scholar 

  • Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe K, Ferré S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213

    CAS  PubMed  Article  Google Scholar 

  • Popoli P, Reggio R, Pèzzola A (2000) Effects of SCH 58261, an adenosine A(2A) receptor antagonist, on quinpirole-induced turning in 6-hydroxydopamine-lesioned rats. Lack of tolerance after chronic caffeine intake. Neuropsychopharmacology 22:522–529

    CAS  PubMed  Article  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    CAS  PubMed  Article  Google Scholar 

  • Prediger RD, da Silva GE, Batista LC, Bittencourt AL, Takahashi RN (2006) Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Neuropsychopharmacology 31:2210–2220

    CAS  PubMed  Google Scholar 

  • Prieto JP, Galvalisi M, López-Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C (2015) Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict 24:475–481

    PubMed  Article  Google Scholar 

  • Quarta D, Ferré S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004a) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158

    CAS  PubMed  Article  Google Scholar 

  • Quarta D, Borycz J, Solinas M, Patkar K, Hockemeyer J, Ciruela F, Lluis C, Franco R, Woods AS, Goldberg SR, Ferré S (2004b) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J Neurochem 91:873–880

    CAS  PubMed  Article  Google Scholar 

  • Quiroz C, Orrú M, Rea W, Ciudad-Roberts A, Yepes G, Britt JP, Ferré S (2016) Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. J Neurosci. doi:10.1523/jneurosci.2850-15.2016

    PubMed  Google Scholar 

  • Randall PA, Nunes EJ, Janniere SL, Stopper CM, Farrar AM, Sager TN, Baqi Y, Hockemeyer J, Müller CE, Salamone JD (2011) Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology 216:173–186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Reissig CJ, Strain EC, Griffiths RR (2009) Caffeinated energy drinks. A growing problem. Drug Alcohol Depend 99:1–10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rhoads DE, Huggler AL, Rhoads LJ (2011) Acute and adaptive motor responses to caffeine in adolescent and adult rats. Pharmacol, Biochem Behav 99:81–86

    CAS  Article  Google Scholar 

  • Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931

    PubMed  Article  Google Scholar 

  • Rimondini R, Ferré S, Ogren SO, Fuxe K (1997) Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 117:82–91

    Article  Google Scholar 

  • Rimondini R, Ferré S, Giménez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioral responses in rats. Eur J Pharmacol 347:153–158

    CAS  PubMed  Article  Google Scholar 

  • Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354

    CAS  PubMed  Article  Google Scholar 

  • Schechter MD (1977) Caffeine potentiation of amphetamine: implications for hyperkinesis therapy. Pharmacol, Biochem Behav 6:359–361

    CAS  Article  Google Scholar 

  • Schenk S, Horger B, Snow S (1990) Caffeine preexposure sensitizes rats to the motor activating effects of cocaine. Behav Pharmacol 1:447–445

    PubMed  Google Scholar 

  • Schenk S, Valadez A, Horger BA, Snow S, Wellman PJ (1994) Interactions between caffeine and cocaine in tests of self-administration. Behav Pharmacol 5:153–158

    CAS  PubMed  Article  Google Scholar 

  • Schenk S, Worley CM, McNamara C, Valadez A (1996) Acute and repeated exposure to caffeine: effects on reinstatement of extinguished cocaine-taking behavior in rats. Psychopharmacology 126:17–23

    CAS  PubMed  Article  Google Scholar 

  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067

    CAS  PubMed  Article  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    CAS  PubMed  Article  Google Scholar 

  • Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH (2013) Forensic investigation of K2, Spice, and "bath salt" commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int 233:416–422

    CAS  PubMed  Article  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147:90–95

    CAS  PubMed  Article  Google Scholar 

  • Simola N, Cauli O, Morelli M (2006) Sensitization to caffeine and cross-sensitization to amphetamine: influence of individual response to caffeine. Behav Brain Res 172:72–79

    CAS  PubMed  Article  Google Scholar 

  • Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 22:6321–6324

    CAS  PubMed  Google Scholar 

  • Solinas M, Ferré S, Antoniou K, Quarta D, Justinova Z, Hockemeyer J, Pappas LA, Segal PN, Wertheim C, Müller CE, Goldberg SR (2005) Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology 179:576–586

    CAS  PubMed  Article  Google Scholar 

  • Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206

    CAS  PubMed  Article  Google Scholar 

  • Starr BS, Starr MS, Kilpatrick IC (1987) Behavioural role of dopamine D1 receptors in the reserpine-treated mouse. Neuroscience 22:179–188

    CAS  PubMed  Article  Google Scholar 

  • Steigerwald ES, Rusiniak KW, Eckel DL, O'Regan MH (1988) Aversive conditioning properties of caffeine in rats. Pharmacol, Biochem Behav 31:579–584

    CAS  Article  Google Scholar 

  • Strömberg I, Popoli P, Müller CE, Ferré S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 12:4033–4037

    PubMed  Article  Google Scholar 

  • Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828

    CAS  PubMed  Article  Google Scholar 

  • Szymusiak R, McGinty D (2008) Hypothalamic regulation of sleep and arousal. Ann NY Acad Sci 1129:275–286

    CAS  PubMed  Article  Google Scholar 

  • Teitelbaum P, Epstein AN (1962) The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev 69:74–90

    CAS  PubMed  Article  Google Scholar 

  • Temple JL (2009) Caffeine use in children: what we know, what we have left to learn, and why we should worry. Neurosci Biobehav Rev 33(6):793–806

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tupala E, Tiihonen J (2004) Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 28:1221–1247

    CAS  PubMed  Article  Google Scholar 

  • Ungerstedt U (1971a) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    CAS  PubMed  Article  Google Scholar 

  • Ungerstedt U (1971b) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68

    CAS  PubMed  Article  Google Scholar 

  • Ungerstedt U (1971c) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Article  Google Scholar 

  • Ungerstedt U (1971d) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122

    CAS  PubMed  Article  Google Scholar 

  • Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29:871–881

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Vanattou-Saïfoudine N, McNamara R, Harkin A (2012) Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 167:946–959

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA (2010) A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson's disease. FASEB J 24:587–598

    CAS  PubMed  Article  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    CAS  PubMed  Article  Google Scholar 

  • Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733

    PubMed  PubMed Central  Article  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 108:15037–15042

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, Wong C, Casado V, Ferre S, Tomasi D (2015) Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry 5, e549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474

    CAS  PubMed  Article  Google Scholar 

  • White BC, Keller GE 3rd (1984) Caffeine pretreatment: enhancement and attenuation of d-amphetamine-induced activity. Pharmacol, Biochem Behav 20:383–386

    CAS  Article  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    CAS  PubMed  Article  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    CAS  PubMed  Article  Google Scholar 

  • Worley CM, Valadez A, Schenk S (1994) Reinstatement of extinguished cocaine-taking behavior by cocaine and caffeine. Pharmacol, Biochem Behav 48:217–221

    CAS  Article  Google Scholar 

  • Yeomans MR, Spetch H, Rogers PJ (1998) Conditioned flavour preference negatively reinforced by caffeine in human volunteers. Psychopharmacology 137:401–409

    CAS  PubMed  Article  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    CAS  PubMed  Article  Google Scholar 

  • Young R, Gabryszuk M, Glennon RA (1998) (-)Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects. Pharmacol, Biochem Behav 61:169–173

    CAS  Article  Google Scholar 

  • Zancheta R, Possi AP, Planeta CS, Marin MT (2012) Repeated administration of caffeine induces either sensitization or tolerance of locomotor stimulation depending on the environmental context. Pharmacol Rep 64:70–77

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the intramural funds of the National Institute on Drug Abuse. The author thanks Dr. Roy A. Wise for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Ferré.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferré, S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology 233, 1963–1979 (2016). https://doi.org/10.1007/s00213-016-4212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4212-2

Keywords

  • Caffeine
  • Psychostimulants
  • Adenosine
  • Dopamine
  • Receptor heteromer
  • Drug abuse
  • Alcohol