Skip to main content

Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives

Abstract

Rationale

Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures.

Objective

We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence.

Results

Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids.

Conclusions

Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.

This is a preview of subscription content, access via your institution.

References

  • Acquas E, Pisanu A, Marrocu P, Goldberg SR, Di Chiara G (2001) Delta9-tetrahydrocannabinol enhances cortical and hippocampal acetylcholine release in vivo: a microdialysis study. Eur J Pharmacol 419:155–161

    CAS  PubMed  Article  Google Scholar 

  • Ahsan HM, de la Peña JB, Botanas CJ, Kim HJ, Yu GY, Cheong JH (2014) Conditioned place preference and self-administration induced by nicotine in adolescent and adult rats. Biomol Ther (Seoul) 22:460–466

    CAS  Article  Google Scholar 

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Alger BE (2009) Endocannabinoid signaling in neural plasticity. Curr Top Behav Neurosci 1:141–172

    CAS  PubMed  Article  Google Scholar 

  • American Psychiatric Association (APA) (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5™). American Psychiatric Association, Arlington

    Google Scholar 

  • Ashton JC, Friberg D, Darlington CL, Smith PF (2006) Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 396:113–116

    CAS  PubMed  Article  Google Scholar 

  • Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160:467–479

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bagdas D, AlSharari SD, Freitas K, Tracy M, Damaj MI (2015) The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem Pharmacol. doi:10.1016/j.bcp.2015.04.013

    PubMed  Google Scholar 

  • Balerio GN, Aso E, Berrendero F, Murtra P, Maldonado R (2004) Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. Eur J Neurosci 20:2737–2748

    PubMed  Article  Google Scholar 

  • Balerio GN, Aso E, Maldonado R (2006) Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology 184:504–513

    CAS  PubMed  Article  Google Scholar 

  • Beltramo M (2000) Reversal of dopamine D2 receptor responses by an anandamide transport inhibitor. J Neurosci 20:3401–3407

    CAS  PubMed  Google Scholar 

  • Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    CAS  PubMed  Article  Google Scholar 

  • Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–135

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bortolato M, Campolongo P, Mangieri RA, Scattoni ML, Frau R, Trezza V, La Rana G, Russo R, Calignano A, Gessa GL, Cuomo V, Piomelli D (2006) Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology 31:2652–2659

    CAS  PubMed  Article  Google Scholar 

  • Breivogel CS, Sim-Selley LJ (2009) Basic neuroanatomy and neuropharmacology of cannabinoids. Int Rev Psychiatry 21:113–121

    PubMed  Article  Google Scholar 

  • Cadas H, Gaillet S, Beltramo M, Venance L, Piomelli D (1996) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J Neurosci 16:3934–3942

    CAS  PubMed  Google Scholar 

  • Cahill K, Ussher MH (2011) Cannabinoid type 1 receptor antagonists for smoking cessation. Cochrane Database Syst Rev Mar 16(3):CD005353

    Google Scholar 

  • Carboni E, Silvagni A, Rolando MT, Di Chiara G (2000) Stimulation of in vivo dopamine transmission in the bed nucleus of stria terminalis by reinforcing drugs. J Neurosci 20(20):RC102

    CAS  PubMed  Google Scholar 

  • Castañé A, Valjent E, Ledent C et al (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43:857–867

    PubMed  Article  Google Scholar 

  • Castañé A, Berrendero F, Maldonado R (2005) The role of the cannabinoid system in nicotine addiction. Pharmacol Biochem Behav 81:381–386

    PubMed  Article  CAS  Google Scholar 

  • Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11:389–401

    CAS  PubMed  Article  Google Scholar 

  • Cheer JF, Heien ML, Garris PA, Carelli RM, Wightman RM (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102:19150–19155

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cheer JF, Wassum KM, Sombers LA et al (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795

    CAS  PubMed  Article  Google Scholar 

  • Childers SR, Deadwyler SA (1996) Role of cyclic AMP in the actions of cannabinoid receptors. Biochem Pharmacol 52:819–827

    CAS  PubMed  Article  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    CAS  PubMed  Article  Google Scholar 

  • Cippitelli A, Astarita G, Duranti A et al (2011) Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. PLoS One 6:e28142

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cohen C, Perrault G, Voltz C, Steinberg R, Soubrie P (2002) SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13:451–463

    CAS  PubMed  Article  Google Scholar 

  • Cohen C, Perrault G, Griebel G, Soubrie P (2005) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30:145–155

    CAS  PubMed  Article  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–289

    CAS  PubMed  Article  Google Scholar 

  • Cossu G, Ledent C, Fattore L et al (2001) Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res 118:61–65

    CAS  PubMed  Article  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    CAS  PubMed  Article  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139:1405–1415

    CAS  PubMed  Article  Google Scholar 

  • Cryan JF, Gasparini F, van Heeke G, Markou A (2003) Non-nicotinic neuropharmacological strategies for nicotine dependence: beyond bupropion. Drug Discov Today 8:1025–1034

    CAS  PubMed  Article  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Ann Rev Pharmacol Toxicol 47:699–729

    CAS  Article  Google Scholar 

  • Deiana S, Fattore L, Spano MS, Cossu G, Porcu E, Fadda P, Fratta W (2007) Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology 52:646–654

    CAS  PubMed  Article  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Article  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    PubMed  PubMed Central  Article  Google Scholar 

  • Di Marzo V (1998) ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta 1392:153–175

    PubMed  Article  Google Scholar 

  • Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    PubMed  Article  CAS  Google Scholar 

  • Di Marzo V (2009) The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res 60:77–84

    PubMed  Article  CAS  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    PubMed  Article  Google Scholar 

  • Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96–108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • D’Souza MS, Markou A (2013) The “stop” and “go” of nicotine dependence: role of GABA and glutamate. Cold Spring Harb Perspect Med 3(6)

  • Dwoskin LP, Smith AM, Wooters TE, Zhang Z, Crooks PA, Bardo MT (2009) Nicotinic receptor-based therapeutics and candidates for smoking cessation. Biochem Pharmacol 78(7):732–43

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dwyer JB, Broide RS, Leslie FM (2008) Nicotine and brain development. Birth Defects Res C Embryo Today 84:30–44

    CAS  PubMed  Article  Google Scholar 

  • Edwards DA, Zhang L, Alger BE (2008) Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc Natl Acad Sci U S A 105:8142–8147

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Engle SE, Shih PY, McIntosh JM, Drenan RM (2013) α4α6β2* nicotinic acetylcholine receptor activation on ventral tegmental area dopamine neurons is sufficient to stimulate a depolarizing conductance and enhance surface AMPA receptor function. Mol Pharmacol 84:393–406

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Esposito E, Cuzzocrea S (2013) Palmitoylethanolamide is a new possible pharmacological treatment for the inflammation associated with trauma. Mini Rev Med Chem 13:237–255

    CAS  PubMed  Google Scholar 

  • Fattore L, Cossu G, Martellotta CM, Fratta W (2001) Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology 156:410–406

    CAS  PubMed  Article  Google Scholar 

  • Fattore L, Spano MS, Altea S, Angius F, Fadda P, Fratta W (2007) Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol 152:795–804

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fattore L, Spano MS, Altea S, Fadda P, Fratta W (2010) Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: influence of ovarian hormones. Br J Pharmacol 160:724–735

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313:352–358

    CAS  PubMed  Article  Google Scholar 

  • Fernández-Ruiz J, Hernández M, Ramos JA (2010) Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:72–91

    Article  CAS  Google Scholar 

  • Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    CAS  PubMed  Article  Google Scholar 

  • Forget B, Hamon M, Thiebot MH (2005) Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology 181:722–734

    CAS  PubMed  Article  Google Scholar 

  • Forget B, Coen KM, Le Foll B (2009) Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration—comparison with CB(1) receptor blockade. Psychopharmacology 205:613–624

    CAS  PubMed  Article  Google Scholar 

  • French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8:649–652

    CAS  PubMed  Article  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    CAS  PubMed  Article  Google Scholar 

  • Gaetani S, Kaye WH, Cuomo V, Piomelli D (2008) Role of endocannabinoids and their analogues in obesity and eating disorders. Eat Weight Disord 13:e42–8

    CAS  PubMed  Google Scholar 

  • Gamaleddin I, Guranda M, Goldberg SR, Le Foll B (2011) The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br J Pharmacol 164:1652–1660

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gamaleddin I, Wertheim C, Zhu AZ et al (2012a) Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 17:47–61

    CAS  PubMed  Article  Google Scholar 

  • Gamaleddin I, Zvonok A, Makriyannis A, Goldberg SR, LeFoll B (2012b) Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self-administration and reinstatement of nicotine seeking. PLoS One 7:e29900

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gamaleddin I, Guranda M, Scherma M, Fratta W, Makriyannis A, Vadivel SK, Goldberg SR, Le Foll B (2013) AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J Psychopharm 27:564–571

    Article  CAS  Google Scholar 

  • Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B (2015) Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry 6:41

    PubMed  PubMed Central  Article  Google Scholar 

  • Gerard N, Ceccarini J, Bormans G et al (2010) Influence of chronic nicotine administration on cerebral type 1 cannabinoid receptor binding: an in vivo micro-PET study in the rat using [18F]MK-9470. J Mol Neurosci 42:162–167

    CAS  PubMed  Article  Google Scholar 

  • Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341(1):39–44

    CAS  PubMed  Article  Google Scholar 

  • Giuffrida A, Piomelli D (2000) The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem Phys Lipids 108:151–158

    CAS  PubMed  Article  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, de Fonseca FR, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    CAS  PubMed  Article  Google Scholar 

  • Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575

    CAS  PubMed  Article  Google Scholar 

  • Goldberg SR, Spealman RD, Risner ME, Henningfield JE (1983) Control of behavior by intravenous nicotine injections in laboratory animals. Pharmacol Biochem Behav 19(6):1011–20

    CAS  PubMed  Article  Google Scholar 

  • Gonzalez S, Cascio MG, Fernandez-Ruiz J et al (2002) Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res 954:73–81

    CAS  PubMed  Article  Google Scholar 

  • Gotti C, Clementi F, Fornari A et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711

    CAS  PubMed  Article  Google Scholar 

  • Gotti C, Guiducci S, Tedesco V et al (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci 30:5311–5325

    CAS  PubMed  Article  Google Scholar 

  • Hanus L, Abu-Lafi S, Fride E et al (2001) 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A 98:3662–3665

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Henningfield JE, Goldberg SR (1983) Nicotine as a reinforcer in human subjects and laboratory animals. Pharmacol Biochem Behav 19(6):989–892

    CAS  PubMed  Article  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    CAS  PubMed  Google Scholar 

  • Hillard CJ (2000) Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3–18

    CAS  PubMed  Article  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–73

    CAS  PubMed  Google Scholar 

  • Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    PubMed  Article  Google Scholar 

  • Howlett AC, Bidaut-Russell M, Devane WA, Melvin LS, Johnson MR, Herkenham M (1990) The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci 13:420–423

    CAS  PubMed  Article  Google Scholar 

  • Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, Damaj MI (2013) The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology 229:591–601

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Iremonger KJ, Wamsteeker Cusulin JI, Bains JS (2013) Changing the tune: plasticity and adaptation of retrograde signals. Trends Neurosci 36:471–479

    CAS  PubMed  Article  Google Scholar 

  • Ishiguro H, Iwasaki S, Teasenfitz L, Higuchi S, Horiuchi Y, Saito T, Arinami T, Onaivi ES (2007) Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J 7:380–385

    CAS  PubMed  Article  Google Scholar 

  • Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, Damaj MI (2010) Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther 334:137–146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Janero DR, Makriyannis A (2009) Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs 14:43–65

    CAS  PubMed  Article  Google Scholar 

  • Jhaveri MD, Richardson D, Robinson I, Garle MJ, Patel A, Sun Y, Sagar DR, Bennett AJ, Alexander SP, Kendall DA, Barrett DA, Chapman V (2008) Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology 55:85–93

    CAS  PubMed  Article  Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology 169:135–140

    CAS  PubMed  Article  Google Scholar 

  • Justinova Z, Goldberg SR, Heishman SJ, Tanda G (2005) Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol Biochem Behav 81:285–299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Justinova Z, Mangieri RA et al (2008) Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol Psychiatry 64:930–937

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Justinova Z, Mascia P, Wu HQ, Secci ME, Redhi GH, Panlilio LV, Scherma M, Barnes C, Parashos A, Zara T, Fratta W, Solinas M, Pistis M, Bergman J, Kangas BD, Ferré S, Tanda G, Schwarcz R, Goldberg SR (2013) Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci 16:1652–1661

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Justinova Z, Panlilio LV, Moreno-Sanz G et al (2015) Effects of fatty acid amide hydrolase (FAAH) inhibitors in non-human primate models of nicotine reward and relapse. Neuropsychopharmacol Off Publ Am College Neuropsychopharmacol 40:2185–2197

    CAS  Article  Google Scholar 

  • Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas SP, Subramanian KV, Shukla VG, Makriyannis A, Bergman J (2013) Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists. J Pharmacol Exp Ther 344:561–567

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D et al (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    CAS  PubMed  Article  Google Scholar 

  • Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    CAS  PubMed  Article  Google Scholar 

  • Kim J, Isokawa M, Ledent C, Alger BE (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 22:10182–10191

    CAS  PubMed  Google Scholar 

  • Kodas E, Cohen C, Louis C, Griebel G (2007) Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology 194:161–171

    CAS  PubMed  Article  Google Scholar 

  • Kortleven C, Fasano C, Thibault D, Lacaille JC, Trudeau LE (2011) The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice. Eur J Neurosci 33:1751–1760

    PubMed  Article  Google Scholar 

  • Kutlu MG, Gould TJ (2015) Nicotine modulation of fear memories and anxiety: implications for learning and anxiety disorders. Biochem Pharmacol 97:498–511

  • Lambert DM, Di Marzo V (1999) The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic? Curr Med Chem 6:757–777

    CAS  PubMed  Google Scholar 

  • Le Foll B, Goldberg SR (2004) Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport 15:2139–2143

    PubMed  Article  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 312:875–883

    PubMed  Article  CAS  Google Scholar 

  • Le Foll B, Forget B, Aubin HJ, Goldberg SR (2008) Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 13:239–252

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lecca S, Melis M, Luchicchi A, Ennas MG, Castelli MP, Muntoni AL, Pistis M (2011) Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology 36:589–602

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M (2012) Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37:1164–1176

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Leslie FM, Mojica CY, Reynaga DD (2013) Nicotinic receptors in addiction pathways. Mol Pharmacol 83:753–758

    CAS  PubMed  Article  Google Scholar 

  • Lichtman AH, Cook SA, Martin BR (1996) Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther 276:585–593

    CAS  PubMed  Google Scholar 

  • Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755

    CAS  PubMed  Article  Google Scholar 

  • Luchicchi A, Lecca S, Carta S, Pillolla G, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2010) Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict Biol 15:277–288

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Maldonado R, Berrendero F (2010) Endogenous cannabinoid and opioid systems and their role in nicotine addiction. Curr Drug Targets 11:440–449

    CAS  PubMed  Article  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    CAS  PubMed  Article  Google Scholar 

  • Marco EM, Granstrem O, Moreno E, Llorente R, Adriani W, Laviola G, Viveros MP (2007) Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats. Eur J Pharmacol 557:37–43

    CAS  PubMed  Article  Google Scholar 

  • Marinelli S, Di Marzo V, Florenzano F et al (2007) N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology 32:298–308

    CAS  PubMed  Article  Google Scholar 

  • Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29:27–46

    CAS  Article  Google Scholar 

  • Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W (1998) Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice. Neuroscience 85(2):327–30

    CAS  PubMed  Article  Google Scholar 

  • Mascia P, Pistis M, Justinova Z, Panlilio LV, Luchicchi A, Lecca S, Scherma M, Fratta W, Fadda P, Barnes C, Redhi GH, Yasar S, Le Foll B, Tanda G, Piomelli D, Goldberg SR (2011) Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol Psychiatry 69:633–641

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mátyás F, Urbán GM, Watanabe M, Mackie K, Zimmer A, Freund TF, Katona I (2008) Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 54:95–107

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Mazzola C, Medalie J, Scherma M et al (2009) Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors. Learn Mem 16:332–337

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • McFadden KL, Cornier MA, Tregellas JR (2014) The role of alpha-7 nicotinic receptors in food intake behaviors. Front Psychol 5:553

    PubMed  PubMed Central  Article  Google Scholar 

  • McLaughlin PJ (2012) Reports of the death of CB1 antagonists have been greatly exaggerated: recent preclinical findings predict improved safety in the treatment of obesity. Behav Pharmacol 23:537–550

    CAS  PubMed  Article  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Article  Google Scholar 

  • Melis M, Pistis M (2012) Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philos Trans R Soc Lond B Biol Sci 367:3276–3285

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Melis M, Pistis M (2014) Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol Res 86:42–49

    CAS  PubMed  Article  Google Scholar 

  • Melis M, Perra S, Muntoni AL, Pillolla G, Lutz B, Marsicano G, Di Marzo V, Gessa GL, Pistis M (2004a) Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci 24:10707–10715

    CAS  PubMed  Article  Google Scholar 

  • Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004b) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24:53–62

    CAS  PubMed  Article  Google Scholar 

  • Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2008) Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci 28:13985–13994

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Melis M, Carta S, Fattore L, Tolu S, Yasar S, Goldberg SR, Fratta W, Maskos U, Pistis M (2010) Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol Psychiatry 68:256–264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Melis M, Carta G, Pistis M, Banni S (2013a) Physiological role of peroxisome proliferator-activated receptors type alpha on dopamine systems. CNS Neurol Disord Drug Targets 12:70–77

    CAS  PubMed  Article  Google Scholar 

  • Melis M, De Felice M, Lecca S, Fattore L, Pistis M (2013b) Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Front Integr Neurosci 7:93

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Melis M, Scheggi S, Carta G et al (2013c) PPARalpha regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving alpha7 nicotinic acetylcholine receptors. J Neurosci 33:6203–6211

    CAS  PubMed  Article  Google Scholar 

  • Melis M, Greco B, Tonini R et al (2014a) Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 39:1189–1201

    PubMed  Article  Google Scholar 

  • Melis M, Sagheddu C, De Felice M, Casti A, Madeddu C, Spiga S, Muntoni AL, Mackie K, Marsicano G, Colombo G, Castelli MP, Pistis M (2014b) Enhanced endocannabinoid-mediated modulation of rostromedial tegmental nucleus drive onto dopamine neurons in Sardinian alcohol-preferring rats. J Neurosci 34:12716–12724

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Melroy-Greif WE, Stitzel JA, Ehringer MA (2015) Nicotinic acetylcholine receptors: upregulation, age-related effects, and associations with drug use. Genes Brain Behav. doi:10.1111/gbb.12251

    PubMed  PubMed Central  Google Scholar 

  • Mendizábal V, Zimmer A, Maldonado R (2006) Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology 31(9):1957–66

    PubMed  Article  CAS  Google Scholar 

  • Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141:395–399

    CAS  PubMed  Article  Google Scholar 

  • Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI (2008) The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 326:483–492

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246

    CAS  PubMed  Article  Google Scholar 

  • Moreira FA, Grieb M, Lutz B (2009) Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 23(1):133–144

    CAS  PubMed  Article  Google Scholar 

  • Muldoon PP, Chen J, Harenza JL, Abdullah RA, Sim-Selley LJ, Cravatt BF, Miles MF, Chen X, Lichtman AH, Damaj MI (2015) Inhibition of monoacylglycerol lipase reduces nicotine withdrawal. Br J Pharmacol 172:869–882

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CAS  PubMed  Article  Google Scholar 

  • Nashmi R, Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 30:181–184

    CAS  PubMed  Article  Google Scholar 

  • Navarrete F, Rodríguez-Arias M, Martín-García E, Navarro D, García-Gutiérrez MS, Aguilar MA, Aracil-Fernández A, Berbel P, Miñarro J, Maldonado R, Manzanares J (2013) Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology 38:2515–2524

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Oda A, Tanaka H (2014) Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture. Neural Regen Res 9:2128–2131

    PubMed  PubMed Central  Article  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    CAS  PubMed  Article  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Hope B, Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 3:e1640

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Panlilio LV, Justinova Z, Mascia P, Pistis M, Luchicchi A, Lecca S, Barnes C, Redhi GH, Adair J, Heishman SJ, Yasar S, Aliczki M, Haller J, Goldberg SR (2012) Novel use of a lipid-lowering fibrate medication to prevent nicotine reward and relapse: preclinical findings. Neuropsychopharmacology 37:1838–1847

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–84

    CAS  PubMed  Article  Google Scholar 

  • Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38

    CAS  PubMed  Article  Google Scholar 

  • Pisanu A, Acquas E, Fenu S, Di Chiara G (2006) Modulation of Delta(9)-THCinduced increase of cortical and hippocampal acetylcholine release by mu opioid and D(1) dopamine receptors. Neuropharmacology 50:661–670

    CAS  PubMed  Article  Google Scholar 

  • Pistillo F, Clementi F, Zoli M, Gotti C (2015) Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 124:1–27

  • Pistis M, Melis M (2010) From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 17:1450–1467

    CAS  PubMed  Article  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD et al (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301(3):1020–1024

    CAS  PubMed  Article  Google Scholar 

  • Rahman S, Engleman EA, Bell RL (2015) Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 8:426

    PubMed  PubMed Central  Article  Google Scholar 

  • Reisiger AR, Kaufling J, Manzoni O, Cador M, Georges F, Caille S (2014) Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis. J Neurosci 34:4285–4292

    PubMed  Article  CAS  Google Scholar 

  • Rose JE (2009) New findings on nicotine addiction and treatment. Nebr Symp Motiv 55:31–141

    Google Scholar 

  • Rucker D, Padwal R, Li SK, Curioni C, Lau DC (2007) Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335:1194–1199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sagar DR, Kendall DA, Chapman V (2008) Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain. Br J Pharmacol 155:1297–1306

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sañudo-Peña MC, Romero J, Seale GE, Fernandez-Ruiz JJ, Walker JM (2000) Activational role of cannabinoids on movement. Eur J Pharmacol 391:269–274

    PubMed  Article  Google Scholar 

  • Savinainen JR, Saario SM, Laitinen JT (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol 204:267–276

    CAS  Article  Google Scholar 

  • Scherma M, Fadda P, Le Foll B, Forget B, Fratta W, Goldberg SR, Tanda G (2008a) The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS Neurol Disord Drug Targets 7:468–481

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinová Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008b) Inhibition of anandamide hydrolysis by URB597 reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther 165:2539–2548

    Google Scholar 

  • Scherma M, Justinová Z, Zanettini C et al (2012) The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol 165:2539–2548

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Serrano A, Parsons LH (2011) Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 132:215–241

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shoaib M (2008) The cannabinoid antagonist AM251 attenuates nicotine self-administration and nicotine-seeking behaviour in rats. Neuropharmacology 54:438–444

    CAS  PubMed  Article  Google Scholar 

  • Simonnet A, Cador M, Caille S (2013) Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area. Addict Biol 18:930–936

    CAS  PubMed  Article  Google Scholar 

  • Solinas M, Scherma M, Fattore L, Stroik J, Wertheim C, Tanda G, Fratta W, Goldberg SR (2007a) Nicotinic alpha 7 receptors as a new target for treatment of cannabis abuse. J Neurosci 27:5615–5620

    CAS  PubMed  Article  Google Scholar 

  • Solinas M, Scherma M, Tanda G, Wertheim CE, Fratta W, Goldberg SR (2007b) Nicotinic facilitation of delta9-tetrahydrocannabinol discrimination involves endogenous anandamide. J Pharmacol Exp Ther 321:1127–1134

    CAS  PubMed  Article  Google Scholar 

  • Steinberg MB, Foulds J (2007) Rimonabant for treating tobacco dependence. Vasc Health Risk Manag 3:307–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stella N, Piomelli D (2001) Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur J Pharmacol 425:189–196

    CAS  PubMed  Article  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    CAS  PubMed  Article  Google Scholar 

  • Sugiura T, Waku K (2000) 2-Arachidonoylglycerol and the cannabinoid receptors. Chem Phys Lipids 108:89–106

    CAS  PubMed  Article  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    CAS  PubMed  Article  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    CAS  PubMed  Article  Google Scholar 

  • Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci 3:1073–1074

    CAS  PubMed  Article  Google Scholar 

  • Tata AM, Velluto L, D’Angelo C, Reale M (2014) Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets 13:1294–3303

    CAS  PubMed  Article  Google Scholar 

  • Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    CAS  PubMed  Article  Google Scholar 

  • Tsuboi K, Okamoto Y, Ikematsu N et al (2011) Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim Biophys Acta 1811:565–577

    CAS  PubMed  Article  Google Scholar 

  • Turu G, Hunyady L (2010) Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol 44:75–85

    CAS  PubMed  Article  Google Scholar 

  • Tzavara ET, Wade M, Nomikos GG (2003) Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 23:9374–9384

    CAS  PubMed  Google Scholar 

  • Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG (2000) The fatty acid amide hydrolase (FAAH). Chem Phys Lipids 108:107–121

    CAS  PubMed  Article  Google Scholar 

  • Ueda N, Liu Q, Yamanaka K (2001) Marked activation of the N-acylphosphatidylethanolamine-hydrolyzing phosphodiesterase by divalent cations. Biochim Biophys Acta 1532:121–127

    CAS  PubMed  Article  Google Scholar 

  • Ueda N, Tsuboi K, Uyama T, Ohnishi T (2011) Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. Biofactors 37:1–7

    CAS  PubMed  Article  Google Scholar 

  • Ueda N, Yamanaka K, Terasawa Y, Yamamoto S (1999) An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett 454:267–70

  • United Nations Office on Drugs and Crime, World Drug Report 2015 (United Nations publication, Sales No. E.15.XI.6)UNODC, World Drug Report, 2015

  • Valjent E, Mitchell JM, Besson MJ, Caboche J, Maldonado R (2002) Behavioural and biochemical evidence for interactions between delta 9-tetrahydrocannabinol and nicotine. Br J Pharmacol 135:564–578

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vasileiou I, Fotopoulou G, Matzourani M, Patsouris E, Theocharis S (2013) Evidence for the involvement of cannabinoid receptors’ polymorphisms in the pathophysiology of human diseases. Expert Opin Ther Targets 17:363–377

    CAS  PubMed  Article  Google Scholar 

  • Wallace TL, Porter RH (2011) Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 82:891–903

    CAS  PubMed  Article  Google Scholar 

  • Weinstein AM, Gorelick DA (2011) Pharmacological treatment of cannabis dependence. Curr Pharm Des 17(14):1351–1358

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Werling LL, Reed SC, Wade D, Izenwasser S (2009) Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats. Int J Dev Neurosci 27:263–269

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wing VC, Shoaib M (2010) Second-order schedules of nicotine reinforcement in rats: effect of AM251. Addict Biol 15:393–402

    CAS  PubMed  Article  Google Scholar 

  • Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 32:517–524

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    CAS  PubMed  Article  Google Scholar 

  • World Health Organization (2015) Tobacco fact sheet 339. July 6, 2015. Accessed Aug. 5, 2015. http://www.who.int/mediacentre/factsheets/fs339/en

  • Yang P, Wang L, Xie XQ (2012) Latest advances in novel cannabinoid CB(2) ligands for drug abuse and their therapeutic potential. Future Med Chem 4:187–204

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A 111:E5007–5015

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

Acknowledgment is given to our colleague and dear friend Steven R. Goldberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pistis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scherma, M., Muntoni, A.L., Melis, M. et al. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology 233, 1765–1777 (2016). https://doi.org/10.1007/s00213-015-4196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4196-3

Keywords

  • Nicotine
  • Nicotinic acetylcholine receptors
  • Cannabinoids
  • Cannabinoid receptors
  • Addiction
  • Dependence