Advertisement

Psychopharmacology

, Volume 233, Issue 4, pp 727–737 | Cite as

Inhibition of hippocampal plasticity in rats performing contrafreeloading for water under repeated administrations of pramipexole

  • Chiara Schepisi
  • Annabella Pignataro
  • Salvatore Simone Doronzio
  • Sonia Piccinin
  • Caterina Ferraina
  • Silvia Di Prisco
  • Marco Feligioni
  • Anna Pittaluga
  • Nicola Biagio Mercuri
  • Martine Ammassari-Teule
  • Robert Nisticò
  • Paolo Nencini
Original Investigation

Abstract

Rationale

Compulsive symptoms develop in patients exposed to pramipexole (PPX), a dopaminergic agonist with high selectivity for the D3 receptor. Consistently, we demonstrated that PPX produces an exaggerated increase in contrafreeloading (CFL) for water, a repetitive and highly inflexible behavior that models core aspects of compulsive disorders.

Objectives

Given the role of the hippocampus in behavioral flexibility, motivational control, and visuospatial working memory, we investigated the role of hippocampus in the expression of PPX-induced CFL. To this aim, rats were subjected to CFL under chronic PPX, and then examined for the electrophysiological, structural, and molecular properties of their hippocampus.

Methods

We measured long-term potentiation (LTP) at CA1 Schaffer collaterals, dendritic spine density in CA1 pyramidal neurons, and then glutamate release and expression of pre and postsynaptic proteins in hippocampal synaptosomes. The effects of PPX on hippocampal-dependent working memory were assessed through the novel object recognition (NOR) test.

Results

We found that PPX-treated rats showing CFL exhibited a significant decrease in hippocampal LTP and failed to exhibit the expected increase in hippocampal spine density. Glutamate release and PSD-95 expression were decreased, while pSYN expression was increased in hippocampal synaptosomes of PPX-treated rats showing CFL. Despite a general impairment of hippocampal synaptic function, working memory was unaffected by PPX treatment.

Conclusions

Our findings demonstrate that chronic PPX affects synaptic function in the hippocampus, an area that is critically involved in the expression of flexible, goal-centered behaviors. We suggest that the hippocampus is a promising target in the pharmacotherapy of compulsive disorders.

Keywords

Pramipexole Contrafreeloading Obsessive-compulsive disorder Hippocampus D3 receptor 

Notes

Compliance with ethical standards

Funding and disclosures

This study was funded by intramural grants from Sapienza University. The authors report no biomedical financial interests or potential conflicts of interest.

Supplementary material

213_2015_4150_MOESM1_ESM.doc (40 kb)
Supplementary Materials and Methods (DOC 39 kb)
213_2015_4150_MOESM2_ESM.doc (166 kb)
Figure S1 Chronic systemic treatment with PPX decreases the fraction of water consumed over water gained during the session. Bars represent the average of the: (a) Operant phase . b) Choice phase. Data are expressed as mean ± SEM. *=p<.05 PPX vs VEH. (DOC 165 kb)

References

  1. Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM (2015) Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr Dis Treat 11:1939–1955PubMedCentralCrossRefPubMedGoogle Scholar
  2. Amato D, Milella MS, Badiani A, Nencini P (2006) Compulsive-like effects of repeated administration of quinpirole on drinking behavior in rats. Behav Brain Res 172(1):1–13CrossRefPubMedGoogle Scholar
  3. Ceschi G, Van der Linden M, Dunker D, Perroud A, Brédart S (2003) Further exploration memory bias in compulsive washers. Behav Res Ther 41(6):737–748CrossRefPubMedGoogle Scholar
  4. Chernoloz O, El Mansari M, Blier P (2009) Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain. Neuropsychopharmacology 34(3):651–661CrossRefPubMedGoogle Scholar
  5. Chudasama Y, Doobay VM, Liu Y (2012) Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. J Neurosci 32(32):10915–10924CrossRefPubMedGoogle Scholar
  6. Cioli I, Caricati A, Nencini P (2000) Quinpirole- and amphetamine-induced hyperdipsia: influence of fluid palatability and behavioral cost. Behav Brain Res 109(1):9–18CrossRefPubMedGoogle Scholar
  7. Collins GT, Newman AH, Grundt P, Rice KC, Husbands SM, Chauvignac C, Chen J, Wang S, Woods JH (2007) Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology (Berl) 193(2):159–170CrossRefGoogle Scholar
  8. D’Angelo C, Eagle DM, Grant JE, Fineberg NA, Robbins TW, Chamberlain SR (2013) Animal models of obsessive-compulsive spectrum disorders. CNS Spectr 19(1):28–49Google Scholar
  9. Davidson TL, Jarrard LE (2004) The hippocampus and inhibitory learning: a 'Gray' area? Neurosci Biobehav Rev 28(3):261–271Google Scholar
  10. De Carolis L, Schepisi C, Milella MS, Nencini P (2011) Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 218(4):749–759CrossRefGoogle Scholar
  11. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30(42):14273–14283CrossRefPubMedGoogle Scholar
  12. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JA (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372(1):115–129CrossRefPubMedGoogle Scholar
  13. Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24(4):916–927CrossRefPubMedGoogle Scholar
  14. Eldridge LL, Knowlton BJ, Furmanski CS, Bookheimer SY, Engel SA (2000) Remembering episodes: a selective role for the hippocampus during retrieval. Nat Neurosci 3(11):1149–1152CrossRefPubMedGoogle Scholar
  15. Gray JA, McNaughton M (2000) The neuropsychology of anxiet: an enquiry into the functions of the septo-hippocampal system, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  16. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79(1):1–4CrossRefPubMedGoogle Scholar
  17. Hammad H, Wagner JJ (2006) Dopamine-mediated disinhibition in the CA1 region of rat hippocampus via D3 receptor activation. J Pharmacol Exp Ther 316(1):113–120CrossRefPubMedGoogle Scholar
  18. Hawken ER, Beninger RJ (2014) The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacology (Berl) 231(9):2001–2008CrossRefGoogle Scholar
  19. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354(1381):269–279PubMedCentralCrossRefPubMedGoogle Scholar
  20. Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A (2014) The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 12(3):219–238PubMedCentralCrossRefPubMedGoogle Scholar
  21. Inglis IR, Ferguson NJK (1986) Starlings search for food rather than eat freely available, identical food. Anim Behav 34:614–617CrossRefGoogle Scholar
  22. Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28(27):6950–6959PubMedCentralCrossRefPubMedGoogle Scholar
  23. Keeler JF, Pretsell DO, Robbins TW (2014) Functional implications of dopamine D1 vs D2 receptors: a “prepare and select” model of the striatal direct vs. indirect pathways. Neuroscience 282:156–175CrossRefGoogle Scholar
  24. Kosaki Y, Watanabe S (2012) Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats. Behav Brain Res 227(1):81–90CrossRefPubMedGoogle Scholar
  25. Langston RF, Stevenson CH, Wilson CL, Saunders I, Wood ER (2010) The role of hippocampal subregions in memory for stimulus associations. Behav Brain Res 215(2):275–291CrossRefPubMedGoogle Scholar
  26. Ladepeche L, Yang L, Bouchet D, Groc L (2013) Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses. PLoS ONE 8(9):e74512PubMedCentralCrossRefPubMedGoogle Scholar
  27. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713Google Scholar
  28. McGowan RT, Robbins CT, Alldredge JR, Newberry RC (2010) Contrafreeloading in grizzly bears: implications for captive foraging enrichment. Zoo Biol 29(4):484–502PubMedGoogle Scholar
  29. Milella MS, Amato D, Badiani A, Nencini P (2008) The influence of cost manipulation on water contrafreeloading induced by repeated exposure to quinpirole in the rat. Psychopharmacology (Berl) 197(3):379–390CrossRefGoogle Scholar
  30. Moore TJ, Glenmullen J, Mattison DR (2014) Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med 174(12):1930–1933CrossRefPubMedGoogle Scholar
  31. Moreno M, Flores P (2012) Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology (Berl) 219(2):647–659CrossRefGoogle Scholar
  32. Ogura T (2011) Contrafreeloading and the value of control over visual stimuli in Japanese macaques (Macaca fuscata). Anim Cogn 14(3):427–431CrossRefPubMedGoogle Scholar
  33. Osborne SR (1977) The free food (contrafreeloading) phenomenon: a review and analysis. Anim Learn Behav 5:221–235CrossRefGoogle Scholar
  34. Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16(23):7478–7486PubMedGoogle Scholar
  35. Pezzulo G, Rigoli F, Chersi F (2013) The mixed instrumental controller: using value of information to combine habitual choice and mental simulation. Front Psychol 4:92PubMedCentralCrossRefPubMedGoogle Scholar
  36. Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312(1):35–44CrossRefPubMedGoogle Scholar
  37. Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder. Curr Protoc Neurosci. doi: 10.1002/0471142301.ns0927s43 PubMedGoogle Scholar
  38. Radomsky AS, Gilchrist PT, Dussault D (2006) Repeated checking really does cause memory distrust. Behav Res Ther 44(2):305–316Google Scholar
  39. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25(9–10):1265–1274Google Scholar
  40. Schepisi C, De Carolis L, Nencini P (2013) Effects of the 5HT2C antagonist SB242084 on the pramipexole-induced potentiation of water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 227(1):55–66CrossRefGoogle Scholar
  41. Schutz KE, Jensen P (2001) Effects of resource allocation on behavioural strategies: a comparison of red junglefowl (Gallus gallus) and two domesticated breeds of poultry. Ethology 107(8):753–765CrossRefGoogle Scholar
  42. Singh D (1970) Preference for bar pressing to obtain reward over freeloading in rats and children. J Comp Physiol Psychol 73(2):320–327CrossRefGoogle Scholar
  43. Sokoloff P, Leriche L, Diaz J, Louvel J, Pumain R (2013) Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol 386:107–124PubMedCentralCrossRefPubMedGoogle Scholar
  44. Stramiello M, Wagner JJ (2008) D1/5 receptor-mediated enhancement of LTP requires PKA, Src family kinases, and NR2B-containing NMDARs. Neuropharmacology 55(5):871–877PubMedCentralCrossRefPubMedGoogle Scholar
  45. Swant J, Stramiello M, Wagner JJ (2008) Postsynaptic dopamine D3 receptor modulation of evoked IPSCs via GABA(A) receptor endocytosis in rat hippocampus. Hippocampus 18(5):492–502CrossRefPubMedGoogle Scholar
  46. Swayze RD, Lisé MF, Levinson JN, Phillips A, El-Husseini A (2004) Modulation of dopamine mediated phosphorylation of AMPA receptors by PSD-95 and AKAP79/150. Neuropharmacology 47(5):764–778CrossRefPubMedGoogle Scholar
  47. Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2011) Functional potencies of dopamine agonists and antagonists at human dopamine D2 and D3 receptors. Eur J Pharmacol 666(1-3):43–52CrossRefPubMedGoogle Scholar
  48. Tarte RD (1981) Contrafreeloading in humans. Psychol Rep 49:859–866CrossRefGoogle Scholar
  49. van den Hout M, Kindt M (2003) Repeated checking causes memory distrust. Behav Res Ther 41(3):301–316CrossRefPubMedGoogle Scholar
  50. Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, Fone KC (2012) Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37(3):770–786PubMedCentralCrossRefPubMedGoogle Scholar
  51. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, Whetteckey J, Wunderlich GR, Lang E (2010) Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67(5):589–595CrossRefPubMedGoogle Scholar
  52. White RW (1959) Motivation reconsidered: the concept of competence. Psychol Rev 66:297–333CrossRefPubMedGoogle Scholar
  53. Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Köster HJ, Borchardt T, Worley P, Lübke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284(5421):1805–1811CrossRefPubMedGoogle Scholar
  54. Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T, Sudhof TC (2013) Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J 32(1):159–171PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chiara Schepisi
    • 1
  • Annabella Pignataro
    • 2
  • Salvatore Simone Doronzio
    • 1
  • Sonia Piccinin
    • 3
  • Caterina Ferraina
    • 3
  • Silvia Di Prisco
    • 4
  • Marco Feligioni
    • 3
  • Anna Pittaluga
    • 4
  • Nicola Biagio Mercuri
    • 2
  • Martine Ammassari-Teule
    • 2
    • 5
  • Robert Nisticò
    • 1
    • 3
  • Paolo Nencini
    • 1
  1. 1.Department of Physiology and PharmacologySapienza UniversityRomeItaly
  2. 2.IRCCS Santa LuciaRomeItaly
  3. 3.European Brain Research InstituteRomeItaly
  4. 4.Department of Pharmacy, Center of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly
  5. 5.Institute of Cell Biology and Neurobiology, National Research CouncilRomeItaly

Personalised recommendations