Skip to main content
Log in

Behavioral impairments and serotonin reductions in rats after chronic L-dopa

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

L-dopa, the main therapeutic for Parkinson’s disease (PD), has been shown to increase brain dopamine concentrations that are necessary for proper motor control; however, PD patients experience non-motor symptoms that are not improved or could be exacerbated by L-dopa.

Objectives

The purpose of this study is to determine the effects of L-dopa treatment on cognitive and affective behavioral responses of rats, as well as their corresponding monoamine brain concentrations.

Methods

Rats were treated with L-dopa (6 mg/kg; twice daily) for 10 consecutive days. Sodium ascorbate (400 mg/kg) was co-administered with L-dopa to investigate the effects of antioxidant co-treatment on behavior and monoamine concentrations. Rats underwent cognitive and affective behavioral testing. Monoamine concentrations of several brain regions were analyzed.

Results

L-dopa treatment resulted in significant impairment in the performance in the Barnes maze and improvement in conditioned fear stress paradigms. Specifically, L-dopa caused an increase in latency to find the goal box during Barnes maze testing and increased freezing behavior in context-induced conditioned fear testing. Furthermore, the rats in the conditioned fear stress experiments showed corresponding depletions in serotonin (5-HT) and its metabolite, 5-HIAA, in the dorsal raphe nucleus (DRN) and the mPFC. The behavioral impairments as well as monoamine depletions were blocked by ascorbate co-treatment.

Conclusions

Chronic L-dopa may contribute to non-motor symptoms related to spatial memory and fear. These effects may be attributable to a dysregulation of brain 5-HT caused by L-dopa treatment. The results presented here provide further rationale for investigating adjunctive therapeutics to L-dopa for PD, such as antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amat J, Baratta MV et al (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • Arai R, Karasawa N et al (1995) L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett 195(3):195–198

    Article  CAS  PubMed  Google Scholar 

  • Banerjee AK, Falkai PG et al (1989) Visual hallucinations in the elderly associated with the use of levodopa. Postgrad Med J 65(764):358–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer EP (2015) Serotonin in fear conditioning processes. Behav Brain Res 277:68–77

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Gray JA et al (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  CAS  PubMed  Google Scholar 

  • Blum S, Hebert AE et al (2006) A role for the prefrontal cortex in recall of recent and remote memories. Neuroreport 17(3):341–344

    Article  PubMed  Google Scholar 

  • Bonnet AM, Czernecki V (2013) Non-motor symptoms in Parkinson’s disease: cognition and behavior. Geriatr Psychol Neuropsychiatr Vieil 11(3):295–304

    PubMed  Google Scholar 

  • Borah A, Mohanakumar KP (2007) Long-term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol 27(8):985–996

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  • Cano de la Cuerda R, Vela L et al (2010) Quantitative measurement of axial rigidity, functional status and health-related quality of life in patients with Parkinson’s disease. Rev Neurol 51(4):193–200

    PubMed  Google Scholar 

  • Carta M, Carlsson T et al (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(Pt 7):1819–1833

    Article  PubMed  Google Scholar 

  • Ceravolo R, Frosini D et al (2009) Impulse control disorders in Parkinson’s disease: definition, epidemiology, risk factors, neurobiology and management. Parkinsonism Relat Disord 15(Suppl 4):S111–S115

    Article  PubMed  Google Scholar 

  • Choi C, Sohn YH et al (2000) The effect of long-term levodopa therapy on depression level in de novo patients with Parkinson’s disease. J Neurol Sci 172(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27(4):840–844

    Article  CAS  PubMed  Google Scholar 

  • Cotzias GC (1968) L-Dopa for Parkinsonism. N Engl J Med 278(11):630

    CAS  PubMed  Google Scholar 

  • Cotzias GC, Papavasiliou PS et al (1969) Modification of Parkinsonism—chronic treatment with L-dopa. N Engl J Med 280(7):337–345

    Article  CAS  PubMed  Google Scholar 

  • Cumming RG, Salkeld G et al (2000) Prospective study of the impact of fear of falling on activities of daily living, SF-36 scores, and nursing home admission. J Gerontol A Biol Sci Med Sci 55(5):M299–M305

    Article  CAS  PubMed  Google Scholar 

  • Ducottet C, Belzung C (2005) Correlations between behaviours in the elevated plus-maze and sensitivity to unpredictable subchronic mild stress: evidence from inbred strains of mice. Behav Brain Res 156(1):153–162

    Article  CAS  PubMed  Google Scholar 

  • Eskow Jaunarajs KL, Dupre KB et al (2010) Behavioral and neurochemical effects of chronic L-DOPA treatment on nonmotor sequelae in the hemiparkinsonian rat. Behav Pharmacol 21(7):627–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eskow Jaunarajs KL, Angoa-Perez M et al (2011) Potential mechanisms underlying anxiety and depression in Parkinson’s disease: consequences of l-DOPA treatment. Neurosci Biobehav Rev 35(3):556–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eskow Jaunarajs KL, George JA et al (2012) L-DOPA-induced dysregulation of extrastriatal dopamine and serotonin and affective symptoms in a bilateral rat model of Parkinson’s disease. Neuroscience 218:243–256

    Article  CAS  PubMed  Google Scholar 

  • Euston DR, Gruber AJ et al (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76(6):1057–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fadok JP, Dickerson TM et al (2009) Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 29(36):11089–11097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz PJ, Chaudhuri KR et al (2014) Non-motor symptoms of Parkinson’s disease. A review from the past. J Neurol Sci 338(1–2):30–33

    Article  PubMed  Google Scholar 

  • Graeff FG, Viana MB et al (1996) Opposed regulation by dorsal raphe nucleus 5-HT pathways of two types of fear in the elevated T-maze. Pharmacol Biochem Behav 53(1):171–177

    Article  CAS  PubMed  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14(4):633–643

    CAS  PubMed  Google Scholar 

  • Haaker J, Gaburro S et al (2013) Single dose of L-dopa makes extinction memories context-independent and prevents the return of fear. Proc Natl Acad Sci U S A 110(26):E2428–E2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashimoto S, Inoue T et al (1999) Effects of conditioned fear stress on serotonin neurotransmission and freezing behavior in rats. Eur J Pharmacol 378(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  CAS  PubMed  Google Scholar 

  • Hollister AS, Breese GR et al (1979) Role of monoamine neural systems in L-dihydroxyphenylalanine-stimulated activity. J Pharmacol Exp Ther 208(1):37–43

    CAS  PubMed  Google Scholar 

  • Huot P, Fox SH et al (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95(2):163–212

    Article  CAS  PubMed  Google Scholar 

  • Izumi T, Ohmura Y et al (2012) Effects of serotonergic terminal lesion in the amygdala on conditioned fear and innate fear in rats. Eur J Pharmacol 696(1-3):89–95

    Article  CAS  PubMed  Google Scholar 

  • Jasinska AJ, Lowry CA et al (2012) Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 35(7):395–402

    Article  CAS  PubMed  Google Scholar 

  • Kannari K, Yamato H et al (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76(5):1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Park SY et al (2009) Nonmotor symptoms in de novo Parkinson disease before and after dopaminergic treatment. J Neurol Sci 287(1-2):200–204

    Article  CAS  PubMed  Google Scholar 

  • Lowry CA, Johnson PL et al (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8(4):233–246

    Article  CAS  PubMed  Google Scholar 

  • Lowry CA, Hale MW et al (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29(4–5):829–841

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Kalman BA et al (1994) Chlordiazepoxide microinjected into the region of the dorsal raphe nucleus eliminates the interference with escape responding produced by inescapable shock whether administered before inescapable shock or escape testing. Behav Neurosci 108(1):121–130

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Donis KC et al (2010) WHOQOL-OLD assessment of quality of life in elderly patients with Parkinson’s disease: influence of sleep and depressive symptoms. Rev Bras Psiquiatr 32(2):125–131

    Article  PubMed  Google Scholar 

  • Mayeux R, Stern Y et al (1981) Depression, intellectual impairment, and Parkinson disease. Neurology 31(6):645–650

    Article  CAS  PubMed  Google Scholar 

  • Messing RB, Lytle LD (1977) Serotonin-containing neurons: their possible role in pain and analgesia. Pain 4(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Milad MR, Vidal-Gonzalez I et al (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118(2):389–394

    Article  CAS  PubMed  Google Scholar 

  • Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 72(4):1516–1522

    Article  CAS  PubMed  Google Scholar 

  • Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15(4):269–281

    Article  PubMed  Google Scholar 

  • Morrow BA, Elsworth JD et al (1999) The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience 92(2):553–564

    Article  CAS  PubMed  Google Scholar 

  • Navailles S, Bioulac B et al (2010) Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis 38(1):136–143

    Article  CAS  PubMed  Google Scholar 

  • Navailles S, Bioulac B et al (2011a) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590

    Article  CAS  PubMed  Google Scholar 

  • Navailles S, Carta M et al (2011b) L-DOPA and serotonergic neurons: functional implication and therapeutic perspectives in Parkinson’s disease. Cent Nerv Syst Agents Med Chem 11(4):305–320

    Article  CAS  PubMed  Google Scholar 

  • Navarro JF, Buron E et al (2006) Anxiolytic-like activity of SB-205384 in the elevated plus-maze test in mice. Psicothema 18(1):100–104

    PubMed  Google Scholar 

  • Ng LK, Chase TN et al (1972) L-dopa in Parkinsonism. A possible mechanism of action. Neurology 22(7):688–696

    Article  CAS  PubMed  Google Scholar 

  • Owen AM (2004) Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. Neuroscientist 10(6):525–537

    Article  PubMed  Google Scholar 

  • Owen AM, Iddon JL et al (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35(4):519–532

    Article  CAS  PubMed  Google Scholar 

  • Peters M, Fitzpatrick R et al (2011) Does self-reported well-being of patients with Parkinson’s disease influence caregiver strain and quality of life? Parkinsonism Relat Disord 17(5):348–352

    Article  PubMed  Google Scholar 

  • Post B, Muslimovic D et al (2011) Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Mov Disord 26(3):449–456

    Article  PubMed  Google Scholar 

  • Quirk GJ, Likhtik E et al (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23(25):8800–8807

    CAS  PubMed  Google Scholar 

  • Richard IH, Frank S et al (2004) The ups and downs of Parkinson disease: a prospective study of mood and anxiety fluctuations. Cogn Behav Neurol 17(4):201–207

    PubMed  Google Scholar 

  • Rodgers RJ (1991) A step in the right direction: comment on ‘5-HT and mechanisms of defence’. J Psychopharmacol 5(4):316–319

    Article  CAS  PubMed  Google Scholar 

  • Roland KP, Jakobi JM et al (2012) Quality of life as a determinant of frailty phenotype in community-dwelling persons with Parkinson’s disease. J Am Geriatr Soc 60(3):590–592

    Article  PubMed  Google Scholar 

  • Sethi K (2008) Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 23(Suppl 3):S521–S533

    Article  PubMed  Google Scholar 

  • Sethi K, Factor S et al (2010) Quality of life in Parkinson’s disease patients following adjunctive tolcapone therapy: results of an open-label, multicenter, community-based trial. CNS Spectr 15(1):27–32

    PubMed  Google Scholar 

  • Shimizu T, Iwata S et al (2004) Antinociceptive mechanism of L-DOPA. Pain 110(1–2):246–249

    Article  CAS  PubMed  Google Scholar 

  • Simpson J, Lekwuwa G et al (2014) Predictors of quality of life in people with Parkinson’s disease: evidence for both domain specific and general relationships. Disabil Rehabil 36(23):1964–1970

    Article  PubMed  Google Scholar 

  • Soh SE, McGinley J et al (2011) Measuring quality of life in Parkinson’s disease: selection of-an-appropriate health-related quality of life instrument. Physiotherapy 97(1):83–89

    Article  PubMed  Google Scholar 

  • Stansley BJ, Yamamoto BK (2013) L-dopa-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology 67:243–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stansley BJ, Yamamoto BK (2014) Chronic L-dopa decreases serotonin neurons in a subregion of the dorsal raphe nucleus. J Pharmacol Exp Ther 351(2):440–447

    Article  PubMed  Google Scholar 

  • Tew EH, Naismith SL et al (2013) Quality of life in Parkinson’s disease caregivers: the contribution of personality traits. Biomed Res Int 2013:151872

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomita H, Ohbayashi M et al (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401(6754):699–703

    Article  CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Biswas A et al (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624(1–2):188–198

    Article  PubMed  Google Scholar 

  • Wallace KJ, Rosen JB (2001) Neurotoxic lesions of the lateral nucleus of the amygdala decrease conditioned fear but not unconditioned fear of a predator odor: comparison with electrolytic lesions. J Neurosci 21(10):3619–3627

    CAS  PubMed  Google Scholar 

  • Winter Y, von Campenhausen S et al (2011) Health-related quality of life and its determinants in Parkinson’s disease: results of an Italian cohort study. Parkinsonism Relat Disord 17(4):265–269

    Article  PubMed  Google Scholar 

  • Yokoyama M, Suzuki E et al (2005) Amygdalic levels of dopamine and serotonin rise upon exposure to conditioned fear stress without elevation of glutamate. Neurosci Lett 379(1):37–41

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan K. Yamamoto.

Additional information

Research supported by NIDA: DA007606

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stansley, B.J., Yamamoto, B.K. Behavioral impairments and serotonin reductions in rats after chronic L-dopa. Psychopharmacology 232, 3203–3213 (2015). https://doi.org/10.1007/s00213-015-3980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3980-4

Keywords

Navigation