, Volume 232, Issue 17, pp 3287–3295 | Cite as

Behavioral and neurophysiological effects of Ro 10-5824, a dopamine D4 receptor partial agonist, in common marmosets

  • Shunsuke Nakazawa
  • Takeshi Murai
  • Masanori Miyauchi
  • Manato Kotani
  • Kazuhito Ikeda
Original Investigation



Growing evidence suggests that dopamine D4 receptors (D4Rs) are involved in controlling executive functions. We have previously demonstrated that Ro 10-5824, a D4R partial agonist, improves the performance of common marmosets in the object retrieval detour (ORD) task. However, the neural mechanisms underlying this improvement are unknown.


We investigated the behavioral and neurophysiological effects of Ro 10-5824 in common marmosets.


The effects of Ro 10-5824 on cognitive function were evaluated using the ORD task. The neurophysiological effects of Ro 10-5824 were investigated by quantitative electroencephalography, especially on baseline gamma band activity in the frontal cortex. The effects of Ro 10-5824 on spontaneous locomotion were also assessed.


Systemic administration of Ro 10-5824 at 3 mg/kg significantly increased the success rate in the ORD task. At doses of 1 and 3 mg/kg, Ro 10-5824 increased baseline gamma band activity in the frontal cortex. Ro 10-5824 had no effect on spontaneous locomotion.


Activation of D4R by Ro 10-5824 improves the success rate in the ORD task and increases baseline gamma band activity in the frontal cortex without affecting locomotion in common marmosets. These findings highlight the role of D4R in gamma oscillations of non-human primates. As gamma oscillations are thought to be involved in attention and behavioral inhibition, our results suggest D4R agonists may improve these cognitive functions by modulating baseline gamma band activity in the frontal cortex.


Non-human primate Dopamine D4 receptor (D4R) Electroencephalography (EEG) Gamma oscillations Object retrieval detour task (ORD task) Cognition Attention deficit hyperactivity disorder (ADHD) 



We wish to thank Keiko Nakamichi for her assistance in analyzing qEEG data and Yuji Ogi and Masaru Ikejiri for their technical assistance in conducting experiments in common marmosets. This study was funded by Sumitomo Dainippon Pharma Co., Ltd. All animal procedures comply with the current relevant laws of Japan.

Conflict of interest

All authors are employees of Sumitomo Dainippon Pharma.


  1. Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A, Buonanno A (2012) Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci U S A 109(32):13118–23PubMedCentralCrossRefPubMedGoogle Scholar
  2. Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1(1):2PubMedCentralCrossRefPubMedGoogle Scholar
  3. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Bruggemann JM (2009) Acute atomoxetine effects on the EEG of children with attention-deficit/hyperactivity disorder. Neuropharmacology 57(7–8):702–7CrossRefPubMedGoogle Scholar
  4. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Dupuy FE (2010) Resting-state EEG gamma activity in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 121(11):1871–7CrossRefPubMedGoogle Scholar
  5. Bastin J, Lebranchu P, Jerbi K, Kahane P, Orban G, Lachaux JP, Berthoz A (2012) Direct recordings in human cortex reveal the dynamics of gamma-band [50–150 Hz] activity during pursuit eye movement control. Neuroimage 63(1):339–47CrossRefPubMedGoogle Scholar
  6. Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21(3):475–85CrossRefPubMedGoogle Scholar
  7. Brioni JD, Moreland RB, Cowart M, Hsieh GC, Stewart AO, Hedlund P, Donnelly-Roberts DL, Nakane M, Lynch JJ 3rd, Kolasa T, Polakowski JS, Osinski MA, Marsh K, Andersson KE, Sullivan JP (2004) Activation of dopamine D4 receptors by ABT-724 induces penile erection in rats. Proc Natl Acad Sci U S A 101(17):6758–63PubMedCentralCrossRefPubMedGoogle Scholar
  8. Browman KE, Curzon P, Pan JB, Molesky AL, Komater VA, Decker MW, Brioni JD, Moreland RB, Fox GB (2005) A-412997, a selective dopamine D4 agonist, improves cognitive performance in rats. Pharmacol Biochem Behav 82(1):148–55CrossRefPubMedGoogle Scholar
  9. Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25(7):340–3CrossRefPubMedGoogle Scholar
  10. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–7PubMedCentralCrossRefPubMedGoogle Scholar
  11. Demiralp T, Herrmann CS, Erdal ME, Ergenoglu T, Keskin YH, Ergen M, Beydagi H (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17(5):1007–19CrossRefPubMedGoogle Scholar
  12. Diamond A (1990) Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. Ann N Y Acad Sci 608:637–76CrossRefPubMedGoogle Scholar
  13. Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158(7):1052–7CrossRefPubMedGoogle Scholar
  14. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMedGoogle Scholar
  15. Friel PN (2007) EEG biofeedback in the treatment of attention deficit hyperactivity disorder. Alternat Med Rev 12(2):146–51Google Scholar
  16. Furth KE, Mastwal S, Wang KH, Buonanno A, Vullhorst D (2013) Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Front Cell Neurosci 7:102. doi: 10.3389/fncel.2013.00102 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115(8):1863–74CrossRefPubMedGoogle Scholar
  18. Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ (2010) Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 68(12):1100–6CrossRefPubMedGoogle Scholar
  19. Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62(3):1504–18PubMedCentralCrossRefPubMedGoogle Scholar
  20. Happé F, Booth R, Charlton R, Hughes C (2006) Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain Cogn 61(1):25–39CrossRefPubMedGoogle Scholar
  21. Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116(12):2719–33CrossRefPubMedGoogle Scholar
  22. Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25(6):465–76CrossRefPubMedGoogle Scholar
  23. Herrmann CS, Fründ I, Lenz D (2010) Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 34(7):981–92CrossRefPubMedGoogle Scholar
  24. Jones NC, Reddy M, Anderson P, Salzberg MR, O’Brien TJ, Pinault D (2012) Acute administration of typical and atypical antipsychotics reduces EEG γ power, but only the preclinical compound LY379268 reduces the ketamine-induced rise in γ power. Int J Neuropsychopharmacol 15(5):657–68CrossRefPubMedGoogle Scholar
  25. Karch S, Segmiller F, Hantschk I, Cerovecki A, Opgen-Rhein M, Hock B, Dargel S, Leicht G, Hennig-Fast K, Riedel M, Pogarell O (2012) Increased γ oscillations during voluntary selection processes in adult patients with attention deficit/hyperactivity disorder. J Psychiatr Res 46(11):1515–23CrossRefPubMedGoogle Scholar
  26. Keizer AW, Verment RS, Hommel B (2010) Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage 49(4):3404–13CrossRefPubMedGoogle Scholar
  27. Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, De La Calle A (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 402(3):353–71CrossRefPubMedGoogle Scholar
  28. Kocsis B, Lee P, Deth R (2013) Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct. doi: 10.1007/s00429-013-0607-6 PubMedGoogle Scholar
  29. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67PubMedCentralCrossRefPubMedGoogle Scholar
  30. Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14):2276–84CrossRefPubMedGoogle Scholar
  31. Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ (1996) Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15(1):17–29CrossRefPubMedGoogle Scholar
  32. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–8CrossRefPubMedGoogle Scholar
  33. Murai T, Nakako T, Ikejiri M, Ishiyama T, Taiji M, Ikeda K (2013) Effects of lurasidone on executive function in common marmosets. Behav Brain Res 246:125–31CrossRefPubMedGoogle Scholar
  34. Murai T, Nakako T, Ikeda K, Ikejiri M, Ishiyama T, Taiji M (2014) Lack of dopamine D4 receptor affinity contributes to the procognitive effect of lurasidone. Behav Brain Res 261:26–30CrossRefPubMedGoogle Scholar
  35. Nakako T, Murai T, Ikejiri M, Ishiyama T, Taiji M, Ikeda K (2013) Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav Brain Res 249:109–15CrossRefPubMedGoogle Scholar
  36. Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, Silva AC (2009) A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev 62(1):1–18PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67(1):53–83CrossRefPubMedGoogle Scholar
  38. Noland JS, Rodrigues NP (2012) Direct touches to clear barriers: developmental sensitivity of a new measure of the production of ineffective responses in infancy. Child Neuropsychol 18(5):506–11PubMedCentralCrossRefPubMedGoogle Scholar
  39. Powell SB, Paulus MP, Hartman DS, Godel T, Geyer MA (2003) RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 44(4):473–81CrossRefPubMedGoogle Scholar
  40. Ptácek R, Kuzelová H, Stefano GB (2011) Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Med Sci Monit 17(9):RA215–20PubMedCentralCrossRefPubMedGoogle Scholar
  41. Salari N, Büchel C, Rose M (2014) Neurofeedback training of gamma band oscillations improves perceptual processing. Exp Brain Res 232(10):3353–61CrossRefPubMedGoogle Scholar
  42. Smucny J, Wylie KP, Tregellas JR (2014) Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci 35(8):397–403PubMedCentralCrossRefPubMedGoogle Scholar
  43. Takahashi H, Yamada M, Suhara T (2012) Functional significance of central D1 receptors in cognition: beyond working memory. J Cereb Blood Flow Metab 32(7):1248–58PubMedCentralCrossRefPubMedGoogle Scholar
  44. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–13CrossRefPubMedGoogle Scholar
  45. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146(1–2):3–17CrossRefPubMedGoogle Scholar
  46. van Wingerden M, Vinck M, Lankelma JV, Pennartz CM (2010) Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex. J Neurosci 30(30):10025–38CrossRefPubMedGoogle Scholar
  47. Yordanova J, Banaschewski T, Kolev V, Woerner W, Rothenberger A (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder—evidence from event-related gamma oscillations. Clin Neurophysiol 112(6):1096–108CrossRefPubMedGoogle Scholar
  48. Young JW, Powell SB, Scott CN, Zhou X, Geyer MA (2011) The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: separating response inhibition from premature responding. Behav Brain Res 222(1):183–92PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zhong P, Yan Z (2014) Distinct physiological effects of dopamine D4 receptors on prefrontal cortical pyramidal neurons and fast-spiking interneurons. Cereb Cortex. doi: 10.1093/cercor/bhu190 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shunsuke Nakazawa
    • 1
  • Takeshi Murai
    • 1
  • Masanori Miyauchi
    • 1
  • Manato Kotani
    • 1
  • Kazuhito Ikeda
    • 1
  1. 1.Drug Development Research LaboratoriesSumitomo Dainippon Pharma Co. LtdOsakaJapan

Personalised recommendations