Skip to main content
Log in

Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments.

Objective

The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption

Methods

A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns.

Results

Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference.

Conclusions

This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99:9026–9030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adamah-Biassi EB, Stepien I, Hudson RL, Dubocovich ML (2013) Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice. Behav Brain Res 243:306–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akhisaroglu M, Ahmed R, Kurtuncu M, Manev H, Uz T (2004) Diurnal rhythms in cocaine sensitization and in period 1 levels are common across rodent species. Pharmacol Biochem Behav 79:37–42

    Article  CAS  PubMed  Google Scholar 

  • Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9:25–39

    Article  PubMed  Google Scholar 

  • Benloucif S, Dubocovich ML (1996) Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythm 11:113–125

    Article  CAS  Google Scholar 

  • Benowitz NL, Kuyt F, Jacob P III (1982) Circadian blood nicotine concentrations during cigarette smoking. Clin Pharmacol Ther 32:758–764

    Article  CAS  PubMed  Google Scholar 

  • Brunzell DH, McIntosh JM (2012) Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology 37:1134–1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burke TM, Markwald RR, Chinoy ED, Snider JA, Bessman SC, Jung CM, Wright KP Jr (2013) Combination of light and melatonin time cues for phase advancing the human circadian clock. Sleep 36:1617–1624

    PubMed Central  PubMed  Google Scholar 

  • Butt CM, King NM, Hutton SR, Collins AC, Stitzel JA (2005) Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism. Behav Neurosci 119:26–37

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284:2177–2181

    Article  CAS  PubMed  Google Scholar 

  • Dahl M, Erickson RP, Simon SA (1997) Neural responses to bitter compounds in rats. Brain Res 756:22–34

    Article  CAS  PubMed  Google Scholar 

  • Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27:101–110

    Article  CAS  PubMed  Google Scholar 

  • Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12:1211–1220

    CAS  PubMed  Google Scholar 

  • Goto M, Oshima I, Tomita T, Ebihara S (1989) Melatonin content of the pineal gland in different mouse strains. J Pineal Res 7:195–204

    Article  CAS  PubMed  Google Scholar 

  • Grainge MJ, Shahab L, Hammond D, O’Connor RJ, McNeill A (2009). First cigarette on waking and time of day as predictors of puffing behaviour in UK adult smokers. Drug Alcohol Depend

  • Gyekis JP, Dingman MA, Revitsky AR, Bryant BP, Vandenbergh DJ, Frank ME, Blizard DA (2012) Gustatory, trigeminal, and olfactory aspects of nicotine intake in three mouse strains. Behav Genet 42:820–829

    Article  PubMed  Google Scholar 

  • Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 35:183–192

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson AJ, Ma J, Liu J, Hudson RL, Dubocovich ML (2014) Role of MT1 melatonin receptors in methamphetamine-induced locomotor sensitization in C57BL/6 mice. Psychopharmacology (Berl) 231:257–267

    Article  CAS  Google Scholar 

  • Jin X, von GC, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23:1054–1060

  • Kamens HM, Burkhart-Kasch S, McKinnon CS, Li N, Reed C, Phillips TJ (2005) Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Genes Brain Behav 4:110–125

    Article  CAS  PubMed  Google Scholar 

  • Kamens HM, Andersen J, Picciotto MR (2010) Modulation of ethanol consumption by genetic and pharmacological manipulation of nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl)

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurtuncu M, Arslan AD, Akhisaroglu M, Manev H, Uz T (2004) Involvement of the pineal gland in diurnal cocaine reward in mice. Eur J Pharmacol 489:203–205

    Article  CAS  PubMed  Google Scholar 

  • Lax P (2008) Melatonin inhibits nicotinic currents in cultured rat cerebellar granule neurons. J Pineal Res 44:70–77

    CAS  PubMed  Google Scholar 

  • Li XC, Karadsheh MS, Jenkins PM, Stitzel JA (2005) Genetic correlation between the free-choice oral consumption of nicotine and alcohol in C57BL/6JxC3H/HeJ F2 intercross mice. Behav Brain Res 157:79–90

    Article  CAS  PubMed  Google Scholar 

  • Li XC, Karadsheh MS, Jenkins PM, Brooks JC, Drapeau JA, Shah MS, Lautner MA, Stitzel JA (2007) Chromosomal loci that influence oral nicotine consumption in C57BL/6J x C3H/HeJ F2 intercross mice. Genes Brain Behav 6:401–410

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  CAS  PubMed  Google Scholar 

  • Markus RP, Santos JM, Zago W, Reno LA (2003) Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3H]glutamate release in rat cerebellum slices. J Pharmacol Exp Ther 305:525–530

    Article  CAS  PubMed  Google Scholar 

  • Markwald RR, Lee-Chiong TL, Burke TM, Snider JA, Wright KP Jr (2010) Effects of the melatonin MT-1/MT-2 agonist ramelteon on daytime body temperature and sleep. Sleep 33:825–831

    PubMed Central  PubMed  Google Scholar 

  • Mexal S, Horton WJ, Crouch EL, Maier SI, Wilkinson AL, Marsolek M, Stitzel JA (2012) Diurnal variation in nicotine sensitivity in mice: role of genetic background and melatonin. Neuropharmacology 63:966–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mooney M, Green C, Hatsukami D (2006) Nicotine self-administration: cigarette versus nicotine gum diurnal topography. Hum Psychopharmacol 21:539–548

    Article  CAS  PubMed  Google Scholar 

  • Morley BJ, Garner LL (1990) Light-dark variation in response to chronic nicotine treatment and the density of hypothalamic alpha-bungarotoxin receptors. Pharmacol. Biochem Behav 37:239–245

  • Pomerleau OF, Collins AC, Shiffman S, Pomerleau CS (1993) Why some people smoke and others do not: new perspectives. J Consult Clin Psychol 61:723–731

    Article  CAS  PubMed  Google Scholar 

  • Prat G, Adan A (2011) Influence of circadian typology on drug consumption, hazardous alcohol use, and hangover symptoms. Chronobiol Int 28:248–257

    Article  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 92:8734–8738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson SF, Marks MJ, Collins AC (1996) Inbred mouse strains vary in oral self-selection of nicotine. Psychopharmacology (Berl) 124:332–339

    Article  CAS  Google Scholar 

  • Russell MA, Stapleton JA, Feyerabend C, Wiseman SM, Gustavsson G, Sawe U, Connor P (1993) Targeting heavy smokers in general practice: randomised controlled trial of transdermal nicotine patches. BMJ 306:1308–1312

  • Schuckit MA (1994) A clinical model of genetic influences in alcohol dependence. J Stud Alcohol 55:5–17

    Article  CAS  PubMed  Google Scholar 

  • Stitzel JA, Lu Y, Jimenez M, Tritto T, Collins AC (2000) Genetic and pharmacological strategies identify a behavioral function of neuronal nicotinic receptors. Behav Brain Res 113:57–64

    Article  CAS  PubMed  Google Scholar 

  • Uz T, Javaid JI, Manev H (2002) Circadian differences in behavioral sensitization to cocaine: putative role of arylalkylamine N-acetyltransferase. Life Sci 70:3069–3075

    Article  CAS  PubMed  Google Scholar 

  • Uz T, Akhisaroglu M, Ahmed R, Manev H (2003) The pineal gland is critical for circadian period 1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology 28:2117–2123

    CAS  PubMed  Google Scholar 

  • Vivien-Roels B, Malan A, Rettori MC, Delagrange P, Jeanniot JP, Pevet P (1998) Daily variations in pineal melatonin concentrations in inbred and outbred mice. J Biol Rhythm 13:403–409

    Article  CAS  Google Scholar 

  • Wilking JA, Hesterberg KG, Crouch EL, Homanics GE, Stitzel JA (2010) Chrna4 A529 knock-in mice exhibit altered nicotine sensitivity. Pharmacogenet Genomics 20:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright KP Jr, Gronfier C, Duffy JF, Czeisler CA (2005) Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J Biol Rhythm 20:168–177

    Article  Google Scholar 

  • Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED (2013) Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol 23:1554–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, Chen YH, Zhang C, Zhao M, Xu DX, Song LH (2012) Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 53:325–334

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova IV, Piotrovskaya VR (2000) Melatonin treatment attenuates symptoms of acute nicotine withdrawal in humans. Pharmacol Biochem Behav 67:131–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Vivian Nyguen, James Laughlin and David Sheneman for their expert technical assistance, and Dr. David Weaver for providing the melatonin receptor double-null mutant mice. These studies were performed with support from NIH DA022462 and DA015663. WJH was supported by institutional training grant NIH DA017637 awarded to IBG.

Conflict of interest disclosure

The authors have no conflicts of interest to disclose

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry A. Stitzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horton, W.J., Gissel, H.J., Saboy, J.E. et al. Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors. Psychopharmacology 232, 2519–2530 (2015). https://doi.org/10.1007/s00213-015-3886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3886-1

Keywords

Navigation