Skip to main content

Advertisement

Log in

Acute tryptophan depletion reduces kynurenine levels: implications for treatment of impaired visuospatial memory performance in irritable bowel syndrome

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A visuospatial episodic memory impairment has recently been identified in irritable bowel syndrome. Increased tryptophan metabolism along the kynurenine pathway has also been reported in irritable bowel syndrome, which may play a role in altered cognitive performance as peripheral kynurenine can cross the blood brain barrier and lead to the production of neuroactive metabolites, which modulate glutamatergic and cholinergic signalling, key neurotransmitter systems involved in cognitive function.

Objectives

Utilising the acute tryptophan depletion (ATD) protocol, the aim of this study was to examine if manipulating peripheral levels of tryptophan regulates cognitive performance in irritable bowel syndrome and also to determine for the first time if the ATD protocol alters kynurenine supply to the central nervous system.

Methods

In this double-blind, placebo-controlled, crossover design study, nine female patients with irritable bowel syndrome and 14 matched female healthy controls participant completed a range of tests from the CANTAB® following ATD and placebo. Plasma tryptophan and kynurenine, self-report measures of gastrointestinal symptoms, mood and arousal were determined pre- and post-treatment on each study day.

Results

Following placebo (p = 0.016) but not ATD (p > 0.05), patients with irritable bowel syndrome exhibited impaired visuospatial memory performance (Paired Associates Learning (PAL) test). In addition, ATD significantly decreased (p < 0.001) and placebo significantly increased (p < 0.001) plasma kynurenine levels in both groups.

Conclusions

Manipulating peripheral tryptophan and kynurenine levels using ATD modulates hippocampal-mediated cognitive performance in irritable bowel syndrome but not healthy controls. These data may have important implications for reducing cognitive impairment in irritable bowel syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizawa E, Sato Y, Kochiyama T, Saito N, Izumiyama M, Morishita J, Kanazawa M, Shima K, Mushiake H, Hongo M, Fukudo S (2012) Altered cognitive function of prefrontal cortex during error feedback in patients with irritable bowel syndrome, based on FMRI and dynamic causal modeling. Gastroenterology 143:1188–1198

    Article  PubMed  Google Scholar 

  • Alexander KS, Wu H-Q, Schwarcz R, Bruno JP (2012) Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology 220:627–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore T, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    Article  CAS  PubMed  Google Scholar 

  • Badawy A (2013) Novel nutritional treatment for manic and psychotic disorders: a review of tryptophan and tyrosine depletion studies and the potential of protein-based formulations using glycomacropeptide. Psychopharmacology 228:347–358

    Article  CAS  PubMed  Google Scholar 

  • Beck AT, Steer RA, Brown GK (1996) Manual for the Beck Depression Inventory-II. Psychological Corporation, San Antonio

    Google Scholar 

  • Berman S, Suyenobu B, Naliboff BD, Bueller J, Stains J, Wong H, Mandelkern M, Fitzgerald L, Ohning G, Gupta A (2012) Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. NeuroImage 63:1854–1863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackwell AD, Sahakian BJ, Vesey R, Semple JM, Robbins TW, Hodges JR (2004) Detecting dementia: novel neuropsychological markers of preclinical Alzheimer’s disease. Dement Feriatric Cogn 17:42–48

    Article  Google Scholar 

  • Blankstein U, Chen J, Diamant NE, Davis KD (2010) Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138:1783–1789

    Article  PubMed  Google Scholar 

  • Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Article  Google Scholar 

  • Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213

    Article  CAS  PubMed  Google Scholar 

  • Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003) Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry 54:906–914

    Article  CAS  PubMed  Google Scholar 

  • Chase HW, Crockett MJ, Msetfi RM, Murphy RA, Clark L, Sahakian BJ, Robbins TW (2011) 5-HT modulation by acute tryptophan depletion of human instrumental contingency judgements. Psychopharmacology 213:615–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33:797–804

    Article  PubMed Central  PubMed  Google Scholar 

  • Chess AC, Landers AM, Bucci DJ (2009) L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res 201:325–331

    Article  CAS  PubMed  Google Scholar 

  • Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM, Dinan TG (2009a) Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol 9:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke G, Quigley EMM, Cryan JF, Dinan TG (2009b) Irritable bowel syndrome: towards biomarker identification. Trends Mol Med 15:478–489

    Article  CAS  PubMed  Google Scholar 

  • Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG (2012) A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol 3:90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. J Health Soc Behav 24(4):385–396

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Robinson OJ, Sahakian B (2007) Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacology 33:2291–2299

    Article  PubMed  Google Scholar 

  • Corte Z, Venta R (2010) Biological variation of free plasma amino acids in healthy individuals. Clin Chem Lab Med CCLM FESCC 48:99–104

    CAS  Google Scholar 

  • Coull JT, Frith CD, Frackowiak RSJ, Grasby PM (1996) A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Crockett MJ, Clark L, Roiser JP, Robinson OJ, Cools R, Chase HW, Ouden H, Apergis-Schoute A, Campbell-Meiklejohn D, Seymour B, Sahakian BJ, Rogers RD, Robbins TW (2012) Converging evidence for central 5-HT effects in acute tryptophan depletion. Mol Psychiatry 17:121–123

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192

  • de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S, Hodges JR, Robbins TW, Fletcher PC, Nestor PJ, Sahakian BJ (2011) Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 49:2060–2070

    Article  PubMed  Google Scholar 

  • Drossman DA, Camilleri M, Mayer EA, Whitehead WE (2002) AGA technical review on irritable bowel syndrome. Gastroenterology 123:2108–2131

    Article  PubMed  Google Scholar 

  • Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1996) Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 15:465–474

    Article  CAS  PubMed  Google Scholar 

  • Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, Tillisch K (2013) Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 154:1528–1541

    Article  PubMed Central  PubMed  Google Scholar 

  • Elliott R, Dolan RJ (1999) Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. J Neurosci 19:5066–5073

    CAS  PubMed  Google Scholar 

  • Elliott R, Baker SC, Rogers RD, O’Leary DA, Paykel ES, Frith CD, Dolan RJ, Sahakian BJ (1997) Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 27:937–942

    Google Scholar 

  • Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ (2000) Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. Neuroreport 11:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald P, Cassidy Eugene M, Clarke G, Scully P, Barry S, Quigley Eamonn MM, Shanahan F, Cryan J, Dinan Timothy G (2008) Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterol Motil 20:1291–1297

  • Floden D, Stuss DT (2006) Inhibitory control is slowed in patients with right superior medial frontal damage. J Cogn Neurosci 18:1843–1849

    Article  PubMed  Google Scholar 

  • Francis CY, Morris J, Whorwell PJ (1997) The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress. Aliment Pharmacol Ther 11:395–402

    Article  CAS  PubMed  Google Scholar 

  • Fray PJ, Robbins TW (1996) CANTAB battery: proposed utility in neurotoxicology. Neurotoxicol Teratol 18:499–504

    Article  CAS  PubMed  Google Scholar 

  • Goldstein M, Brendel G, Tuescher O, Pan H, Epstein J, Beutel M, Yang Y, Thomas K, Levy K, Silverman M (2007) Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: an emotional linguistic go/no-go fMRI study. Neuroimage 36:1026–1040

    Article  PubMed  Google Scholar 

  • Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Groeger JA, Field D, Hammond SM (1999) Measuring memory span. Int J Psychol 34:359–363

    Article  Google Scholar 

  • Holzer P (2001) Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 429:177–193

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8:107–123

    Article  CAS  PubMed  Google Scholar 

  • Hong J-Y, Kilpatrick LA, Labus J, Gupta A, Jiang Z, Ashe-McNalley C, Stains J, Heendeniya N, Ebrat B, Smith S (2013) Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. J Neurosci 33:11994–12002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Z, Dinov ID, Labus J, Shi Y, Zamanyan A, Gupta A, Ashe-McNalley C, Hong J-Y, Tillisch K, Toga AW (2013) Sex-related differences of cortical thickness in patients with chronic abdominal pain. PLoS One 8:e73932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennedy PJ, Clarke G, Quigley EMM, Groeger JA, Dinan TG, Cryan JF (2012) Gut memories: towards a cognitive neurobiology of irritable bowel syndrome. Neurosci Biobehav Rev 36:310–340

    Article  PubMed  Google Scholar 

  • Kennedy PJ, Clarke G, O’Neill A, Groeger JA, Quigley EMM, Shanahan F, Cryan JF, Dinan TG (2014a) Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol Med 44:1553–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennedy PJ, Cryan JF, Quigley EMM, Dinan TG, Clarke G (2014b) A sustained hypothalamic–pituitary–adrenal axis response to acute psychosocial stress in irritable bowel syndrome. Psychol Med FirstView 1–12

  • Klaassen T, Riedel WJ, van Someren A, Deutz NE, Honig A, van Praag HM (1999) Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry 46:489–497

    Article  CAS  PubMed  Google Scholar 

  • Labus JS, Dinov ID, Jiang Z, Ashe-McNalley C, Zamanyan A, Shi Y, Hong J-Y, Gupta A, Tillisch K, Ebrat B (2014) Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155:137–149

  • Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC (2006) Functional bowel disorders. Gastroenterology 130:1480–1491

    Article  PubMed  Google Scholar 

  • Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381–396

    Article  CAS  PubMed  Google Scholar 

  • Mayer EA, Naliboff BD, Chang L, Coutinho SV (2001) V. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 280:G519–G524

    CAS  PubMed  Google Scholar 

  • Mayer EA, Aziz Q, Coen S, Kern M, Labus JS, Lane R, Kuo B, Naliboff B, Tracey I (2009) Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 21:579–596

    Article  CAS  Google Scholar 

  • Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33:926–952

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH (2013) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156–167

    Article  PubMed  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology 163:42–53

    Article  CAS  PubMed  Google Scholar 

  • Nachev P, Wydell H, O’Neill K, Husain M, Kennard C (2007) The role of the pre-supplementary motor area in the control of action. Neuroimage 36:T155–T163

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson H, Willison J (1991) National adult reading test (NART): test manual, 2nd edn. NFER Nelson, Windsor

    Google Scholar 

  • Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, Bain EE, Luckenbaugh DA, Herscovitch P, Charney DS (2004) Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 61:765

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci U S A 94:5308–5313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33:1–24

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Morris RG, Sahakian BJ, Polkey CE, Robbins TW (1996) Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain J Neurol 119(Pt 5):1597–1615

    Article  Google Scholar 

  • Riedel WJ, Klaassen T, Deutz NE, van Someren A, van Praag HM (1999) Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology 141:362–369

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Sahakian BJ (1994) Computer methods of assessment of cognitive function. Principles and Practice of Geriatric Psychiatry. John Wiley & Sons Ltd, Chichester, pp 205–209

    Google Scholar 

  • Rowe JB, Owen AM, Johnsrude IS, Passingham RE (2001) Imaging the mental components of a planning task. Neuropsychologia 39:315–327

    Article  CAS  PubMed  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27

    Article  PubMed  Google Scholar 

  • Sahakian BJ, Owen AM (1992) Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med 85:399–402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt JA, Jorissen BL, Sobczak S, van Boxtel MP, Hogervorst E, Deutz NE, Riedel WJ (2000) Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers. J Psychopharmacol (Oxford, England) 14:21–29

    Article  CAS  Google Scholar 

  • Seminowicz DA, Labus JS, Bueller JA, Tillisch K, Naliboff BD, Bushnell MC, Mayer EA (2010) Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139(48–57):e2

    PubMed  Google Scholar 

  • Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33

    PubMed  Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA (1983) Manual for the state-trait anxiety inventory. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Darlington LG (2013) The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 169:1211–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strauss E, Sherman EMS, Spreen O (2006) Compendium of neuropsychological tests: administration, norms, and commentary, 3rd edn. Oxford University Press, NY

    Google Scholar 

  • Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, Chen J, He S, Hu X (2005) Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage 26:36–47

    Article  CAS  PubMed  Google Scholar 

  • Swainson R, Hodges JR, Galton CJ, Semple J, Michael A, Dunn BD, Iddon JL, Robbins TW, Sahakian BJ (2001) Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord 12:265–280

    Article  CAS  PubMed  Google Scholar 

  • Sweeney JA, Kmiec JA, Kupfer DJ (2000) Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol Psychiatry 48:674–684

    Article  CAS  PubMed  Google Scholar 

  • Tillisch K, Mayer EA, Labus JS (2011) Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 140:91–100

    Article  PubMed Central  PubMed  Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18:626–636

    Article  PubMed  Google Scholar 

  • van der Plasse G (2012) Converging evidence for central 5-HT effects in acute tryptophan depletion? Mol Psychiatry 18:271–272

  • van Donkelaar EL, Blokland A, Ferrington L, Kelly PA, Steinbusch HW, Prickaerts J (2011) Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 16:695–713

    Article  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez–Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    Article  CAS  PubMed  Google Scholar 

  • Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Woods DL, Kishiyama MM, Yund EW, Herron TJ, Edwards B, Poliva O, Hink RF, Reed B (2010) Improving digit span assessment of short-term verbal memory. J Clin Exp Neuropsychol 4:1–11

    Google Scholar 

  • Young SN, Tourjman SV, Teff KL, Pihl RO, Anderson GH (1988) The effect of lowering plasma tryptophan on food selection in normal males. Pharmacol Biochem Behav 31:149–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Alimentary Pharmabiotic Centre is a Centre for Science and Technology (CSET) funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (grant numbers SFI/12/RC/2273, 02/CE/B124 and 07/CE/B1368), Health Research Board (HRB) through Health Research Awards (grant no HRA_POR/2011/23; TGD, JFC and GC) and UCC Strategic Research Fund towards the purchase of CANTAB® software licenses.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Clarke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, P.J., Allen, A.P., O’Neill, A. et al. Acute tryptophan depletion reduces kynurenine levels: implications for treatment of impaired visuospatial memory performance in irritable bowel syndrome. Psychopharmacology 232, 1357–1371 (2015). https://doi.org/10.1007/s00213-014-3767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3767-z

Keywords

Navigation