Skip to main content
Log in

Differential effects of dopamine D1 and D2/3 receptor antagonism on motor responses

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The zebrafish dopaminergic system is thought to be evolutionarily conserved and may be amenable to pharmacological manipulation using drugs developed for mammalian receptors. However, only few studies have examined the role of specific receptor subtypes in behaviour of adult zebrafish.

Objectives

The objectives of this study are to determine the translational relevance of the zebrafish and examine the psychopharmacology of specific dopamine receptors in this species.

Methods

Using a behavioural pharmacological approach, we examine the effect of D1 and D2/3 receptor antagonisms on motor patterns of adult zebrafish during acute drug exposure and withdrawal.

Results

Acute exposure to SCH-23390 (D1 receptor antagonist) decreased total distance travelled in a dose-dependent manner. Exposure to amisulpride (D2/3 receptor antagonist) induced a biphasic dose-response in total distance travelled and in angular velocity. The results provide support for the existence of structurally and functionally conserved postsynaptic D1 and D2 receptors, as well as presynaptic D2 autoreceptors in the zebrafish brain. The behavioural effects of the employed antagonists did not persist following 30 min of withdrawal.

Conclusion

The results suggest that zebrafish, a cheaper and simpler model organism compared to the rat and the mouse, may be an efficient translationally relevant tool for the analysis of the psychopharmacology of receptors of the vertebrate dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbazuk WB, Korf I, Kadavi C, Heyen H, Tate S, Wun E et al (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barghon R, Costentin JH (1980) Rotational behaviour induced by unilateral electrical stimulations of nigro-striatal dopamine neurons: modification by low doses of apomorphine. Eur J Pharmacol 64:39–46

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu J, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robison TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  • Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R (2004) Evolution and expression of D2 and D3 receptor genes in zebrafish. Dev Dyn 230:481–493

    Article  CAS  PubMed  Google Scholar 

  • Boehmler W, Carr T, Thisse C, Thisse B, Canfield V, Levenson R (2007) D4 dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav 6:155–166

    Article  CAS  PubMed  Google Scholar 

  • Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Reviews 7:399–414

    Article  CAS  PubMed  Google Scholar 

  • Briggs CA, Pollack NJ, Frail DE, Paxson CL, Rakowski RF, Kang CH, Kebabian JW (1991) Activation of the 5-HT1C receptor expressed in Xenopus oocytes by the benzazepines SCH 23390 and SKF 38393. Br J Pharmacol 104:1038–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connors KA, Valenti TW, Lawless K, Sackerman J, Onaivi ES, Brooks BW, Gould GG (2014) Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. Aquat Toxicol 151:105–113

    Article  CAS  PubMed  Google Scholar 

  • Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MA, Hipolide D et al (2008) Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res 189:364–372

    Article  PubMed  Google Scholar 

  • De Mei C, Ramos M, Iitaka C, Borrelli E (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9:53–58

    Article  PubMed Central  PubMed  Google Scholar 

  • Decarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E (2014) Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis. doi:10.1002/dvg.22785

    PubMed  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  Google Scholar 

  • Eilam D, Szechtman H (1989) Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 161:151–157

    Article  CAS  PubMed  Google Scholar 

  • Farrell TC, Cario CL, Milanese C, Vogt A, Jeong JH, Burton EA (2011) Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models. Neurobiol Dis 44:9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Munoz M, Patino P, Wright AJ, Arbuthnott GW (1983) The anatomical substrate of the turning behaviour seen after lesions in the nigrostriatal dopamine system. Neuroscience 8:87–95

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R, Lahav M, Guo S, Rosenthanol A (2000) Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–82

    Article  CAS  PubMed  Google Scholar 

  • Giacomini N, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Sokoloff P, Martres M, Riou J, Emorine L, Schwartz J (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926

    Article  CAS  PubMed  Google Scholar 

  • Guryev V (2006) Genetic variation in the zebrafish. Genome Res 4:491–497

    Article  Google Scholar 

  • Hoffman DC, Beninger RJ (1985) The D1 dopamine receptor antagonist, SCH-23390 reduces locomotor activity and rearing in rats. Pharmacol Biochem Behav 22:341–342

    Article  CAS  PubMed  Google Scholar 

  • Hudson J, van Horne C, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer B, Gerhardt G (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626:167–174

    Article  CAS  PubMed  Google Scholar 

  • Irons TD, Kelly PE, Hunter DL, MacPhail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103:792–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jerussi TP, Glick SD (1975) Apomorphine-induced rotation in normal rats and interaction with unilateral caudate lesions. Psychopharmacologia 40:329–334

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zeng X, Li Y, Ma S, Bai J (2013) Ephedrine induced thioredoxin-1 expression through beta-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway. Cell Signal 25:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Kily LJM, Cowe YC, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Klee EW, Schneider H, Clark KJ, Cousin MA, Ebbert JO et al (2012) Zebrafish: a model for the study of addiction genetics. Hum Genet 131:977–1008

    Article  CAS  PubMed  Google Scholar 

  • Klinker F, Hasan K, Paulus W, Nitsche MA, Liebetanz D (2013) Pharmacological blockade and genetic absence of the dopamine D2 receptor specifically modulate voluntary locomotor activity in mice. Behav Brain Res 242:117–124

    Article  CAS  PubMed  Google Scholar 

  • Koshikawa N, Mori E, Maruyama Y, Yatsushige N, Kobayashi M (1990) Role of dopamine D-1 and D2 receptors in the ventral striatum in the turning behaviour of rats. Eur J Pharmacol 178:233–237

    Article  CAS  PubMed  Google Scholar 

  • Levin E, Bencan Z, Cerutti D (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90:54–58

    Article  CAS  PubMed  Google Scholar 

  • Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hu D, Liu F, Chen Z, Luo J (2008) Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and H3 receptor agonist. Pharmacol Biochem Behav 90:325–330

    Article  CAS  PubMed  Google Scholar 

  • Maximino C, Puty B, Mato Oliveira KR, Herculano AM (2013) Behavioural and neurochemical changes in the zebrafish leopard strain. Genes Brain Behav 12:576–582

    Article  CAS  PubMed  Google Scholar 

  • Meyer ME, Shults JM (1993) Dopamine D1 receptor family agonists, SK&F38393, SK&F77434, and SK&F82958, Differentially affect locomotor activities in rats. Pharmacol Biochem Behav 46:269–274

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Quentric Y, Cussac D (2001) The “selective” dopamine D1 receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human serotonin2C receptors. Psychopharmacology 156:58–62

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Seguin L, Gobert A, Cussac D, Brocco M (2004) The role of dopamine D3 compared with D2 receptors in the control of locomotor activity: a combined behavioural and neurochemical analysis with novel, selective antagonists in rats. Psychopharmacol (Berl) 174:341–357

    Article  CAS  Google Scholar 

  • Monsma F, McVittie L, Gerfen C, Mahan L, Sibley D (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    Article  CAS  PubMed  Google Scholar 

  • Pannia E, Tran S, Rampersad M, Gerlai R (2014) Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: a time course analysis. Behav Brain Res 259:174–185

    Article  CAS  PubMed  Google Scholar 

  • Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B (1997) Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonistic activity and limbic selectivity. J Pharmacol Exp Ther 280:73–82

    CAS  PubMed  Google Scholar 

  • Pritchard LM, Logue AD, Hayes S, Welge JA, Xu M, Zhang J, Berger SP, Richtand NM (2003) 7-OH-DPAT and PD 128907 selectively activate the D3 dopamine receptor in a novel environment. Neuropsychopharmacology 28:100–107

    Article  CAS  PubMed  Google Scholar 

  • Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD (2011) Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 33:608–617

    Article  CAS  PubMed  Google Scholar 

  • Rink E, Wullimann M (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330

    Article  CAS  PubMed  Google Scholar 

  • Rink E, Wullimann M (2002) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in the teleost. Brain Res Bull 52:385–387

    Article  Google Scholar 

  • Rink E, Wullimann M (2007) Connections of the ventral telencephalon in the zebrafish. Brain Res 1011:206–220

    Article  Google Scholar 

  • Roussigne M, Blader P, Wilson SW (2012) Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev Neurobiol 72:269–281

    Article  PubMed  Google Scholar 

  • Scerbina T, Chatterjee D, Gerlai R (2012) Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids 43:2059–2072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoemaker H, Chlaustre Y, Fage D, Rouquier L, Cherqui K, Curet O, Oblin A et al (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 280:83–97

    CAS  PubMed  Google Scholar 

  • Sivamani S, Benin J, Nishwetha K, Bibhas K (2013) Zebrafish as a model for bioavailability testing of over the counter drug. Intl J Drug Dev Res 5:159–163

    Google Scholar 

  • Sobrian SK, Jones BL, Varhese S, Holson RR (2003) Behavioural response profiles following drug challenge with dopamine receptor subtype agonists and antagonists in developing rat. Neurotoxicol Teratol 25:311–328

    Article  CAS  PubMed  Google Scholar 

  • Stolzenberg DS, Zhang KY, Luskin K, Ranker L, Bress J, Numan M (2010) Dopamine D1 receptor activation of adenylyl cyclise, not phospholipase C, in the nucleus accumbens promotes maternal behavior onset in rats. Horm Behav 57:96–104

    Article  CAS  PubMed  Google Scholar 

  • Tran S, Gerlai R (2013a) Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio). Behav Brain Res 252:204–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran S, Gerlai R (2013b) Individual differences in activity levels in zebrafish (Danio rerio). Behav Brain Res 257:224–229

    Article  PubMed Central  PubMed  Google Scholar 

  • Tran S, Chatterjee D, Gerlai R (2014) An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav Brain Res. doi:10.1016/j.pnpbp.2014.02.008

    Google Scholar 

  • Wahlsten D (1990) Insensitivity of the analysis of variance to heredity x environment interaction. Behav Brain Sci 13:109–61

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by an NSERC Discovery grant (#311637) issued to R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, S., Nowicki, M., Muraleetharan, A. et al. Differential effects of dopamine D1 and D2/3 receptor antagonism on motor responses. Psychopharmacology 232, 795–806 (2015). https://doi.org/10.1007/s00213-014-3713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3713-0

Keywords

Navigation