Skip to main content

Advertisement

Log in

Functional connectivity in frontal-striatal brain networks and cocaine self-administration in female rhesus monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cocaine addiction is characterized by alternating cycles of abstinence and relapse and loss of control of drug use despite severe negative life consequences associated with its abuse.

Objective

The objective of the present study was to elucidate critical neural circuits involved in individual vulnerabilities to resumption of cocaine self-administration following prolonged abstinence.

Methods

The subjects were three female rhesus monkeys in prolonged abstinence following a long history of cocaine self-administration. Initial experiments examined the effects of acute cocaine administration (0.3 mg/kg, IV) on functional brain connectivity across the whole brain and in specific brain networks related to behavioral control using functional magnetic resonance imaging in fully conscious subjects. Subsequently, these subjects were allowed to resume cocaine self-administration to determine whether loss of basal connectivity within specific brain networks predicted the magnitude of resumption of cocaine intake following prolonged abstinence.

Results

Acute cocaine administration robustly decreased global functional connectivity and selectively impaired top-down prefrontal circuits that control behavior, while sparing connectivity of striatal areas within limbic circuits. Importantly, impaired connectivity between prefrontal and striatal areas during abstinence predicted cocaine intake when these subjects were provided renewed access to cocaine.

Conclusions

Based on these findings, loss of prefrontal to striatal functional connectivity may be a critical mechanism underlying the negative downward spiral of cycles of abstinence and relapse that characterizes cocaine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American_Psychiatric_Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington

    Book  Google Scholar 

  • Bachman JG, O’Malley PM, Johnston LD, Schulenberg JE, Wallace JM (2011) Racial/ethnic differences in the relationship between parental education and substance use among U.S. 8th-, 10th-, and 12th-grade students: findings from the monitoring the future project. J Stud Alcohol Drugs 72:279–285

    PubMed Central  PubMed  Google Scholar 

  • Banks ML, Andersen ML, Murnane KS, Meyer RC, Howell LL (2009) Behavioral and neurochemical effects of cocaine and diphenhydramine combinations in rhesus monkeys. Psychopharmacol (Berlin) 205:467–474

    Article  CAS  Google Scholar 

  • Camchong J, MacDonald AW 3rd, Nelson B, Bell C, Mueller BA, Specker S, Lim KO (2011) Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry 69:1117–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carhart-Harris RL, Murphy K, Leech R, Erritzoe D, Wall MB, Ferguson B, Williams LT, Roseman L, Brugger S, De Meer I, Tanner M, Tyacke R, Wolff K, Sethi A, Bloomfield MA, Williams TM, Bolstridge M, Stewart L, Morgan C, Newbould RD, Feilding A, Curran HV, Nutt DJ (2014) The effects of acutely administered 3,4-methylenedioxymethamphetamine on spontaneous brain function in healthy volunteers measured with arterial spin labeling and blood oxygen level-dependent resting state functional connectivity. Biol Psychiatry

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, O’Brien CP, Childress AR (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 51:134–142

    Article  CAS  PubMed  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • George O, Koob GF (2010) Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev 35:232–247

    Article  PubMed Central  PubMed  Google Scholar 

  • George O, Mandyam CD, Wee S, Koob GF (2008) Extended access to cocaine self-administration produces long-lasting prefrontal cortex-dependent working memory impairments. Neuropsychopharmacology 33:2474–2482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould RW, Gage HD, Nader MA (2012) Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in Rhesus monkeys. Biol Psychiatry 72:856–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y (2010) Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 53:593–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci 877:33–48

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376

    Article  CAS  PubMed  Google Scholar 

  • Hanlon CA, Wesley MJ, Stapleton JR, Laurienti PJ, Porrino LJ (2011) The association between frontal-striatal connectivity and sensorimotor control in cocaine users. Drug Alcohol Depend 115:240–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanlon CA, Beveridge TJ, Porrino LJ (2013) Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci Biobehav Rev 37:2037–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holman BL, Mendelson J, Garada B, Teoh SK, Hallgring E, Johnson KA, Mello NK (1993) Regional cerebral blood flow improves with treatment in chronic cocaine polydrug users. J Nucl Med 34:723–727

    CAS  PubMed  Google Scholar 

  • Howell LL, Fantegrossi WE (2009) Intravenous drug self-administration in nonhuman primates

  • Howell LL, Wilcox KM (2001) The dopamine transporter and cocaine medication development: drug self-administration in nonhuman primates. J Pharmacol Exp Ther 298:1–6

    CAS  PubMed  Google Scholar 

  • Howell LL, Hoffman JM, Votaw JR, Landrum AM, Jordan JF (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106:161–169

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Hoffman JM, Votaw JR, Landrum AM, Wilcox KM, Lindsey KP (2002) Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys. Psychopharmacol (Berlin) 159:154–160

    Article  CAS  Google Scholar 

  • Howell LL, Wilcox KM, Lindsey KP, Kimmel HL (2006) Olanzapine-induced suppression of cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 31:585–593

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacol (Berlin) 146:373–390

    Article  CAS  Google Scholar 

  • Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  • Kelly C, Zuo XN, Gotimer K, Cox CL, Lynch L, Brock D, Imperati D, Garavan H, Rotrosen J, Castellanos FX, Milham MP (2011) Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry 69:684–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimmel HL, Negus SS, Wilcox KM, Ewing SB, Stehouwer J, Goodman MM, Votaw JR, Mello NK, Carroll FI, Howell LL (2008) Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys. Pharmacol Biochem Behav 90:453–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ (2013) Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry 70:857–868

    Article  CAS  PubMed  Google Scholar 

  • Lam SC, Wang Z, Li Y, Franklin T, O’Brien C, Magland J, Childress AR (2013) Wavelet-transformed temporal cerebral blood flow signals during attempted inhibition of cue-induced cocaine craving distinguish prognostic phenotypes. Drug Alcohol Depend 128:140–147

    Article  PubMed  Google Scholar 

  • Lane SD, Steinberg JL, Ma L, Hasan KM, Kramer LA, Zuniga EA, Narayana PA, Moeller FG (2010) Diffusion tensor imaging and decision making in cocaine dependence. PLoS ONE 5:e11591

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin JM, Holman BL, Mendelson JH, Teoh SK, Garada B, Johnson KA, Springer S (1994) Gender differences in cerebral perfusion in cocaine abuse: technetium-99m-HMPAO SPECT study of drug-abusing women. J Nucl Med 35:1902–1909

    CAS  PubMed  Google Scholar 

  • Lim KO, Choi SJ, Pomara N, Wolkin A, Rotrosen JP (2002) Reduced frontal white matter integrity in cocaine dependence: a controlled diffusion tensor imaging study. Biol Psychiatry 51:890–895

    Article  CAS  PubMed  Google Scholar 

  • Lindsey KP, Wilcox KM, Votaw JR, Goodman MM, Plisson C, Carroll FI, Rice KC, Howell LL (2004) Effects of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging. J Pharmacol Exp Ther 309:959–969

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Liu Y, Li N, Wang CX, Zhang H, Jiang XF, Xu HS, Fu XM, Hu X, Zhang DR (2010) Addiction related alteration in resting-state brain connectivity. Neuroimage 49:738–744

    Article  PubMed Central  PubMed  Google Scholar 

  • Maas LC, Lukas SE, Kaufman MJ, Weiss RD, Daniels SL, Rogers VW, Kukes TJ, Renshaw PF (1998) Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155:124–126

    Article  CAS  PubMed  Google Scholar 

  • Murnane KS, Howell LL (2010) Development of an apparatus and methodology for conducting functional magnetic resonance imaging (fMRI) with pharmacological stimuli in conscious rhesus monkeys. J Neurosci Methods 191:11–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Murnane KS, Winschel J, Schmidt KT, Stewart LM, Rose SJ, Cheng K, Rice KC, Howell LL (2013) Serotonin 2A receptors differentially contribute to abuse-related effects of cocaine and cocaine-induced nigrostriatal and mesolimbic dopamine overflow in nonhuman primates. J Neurosci 33:13367–13374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24

    Article  CAS  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  • Sawyer EK, Mun J, Nye JA, Kimmel HL, Voll RJ, Stehouwer JS, Rice KC, Goodman MM, Howell LL (2012) Neurobiological changes mediating the effects of chronic fluoxetine on cocaine use. Neuropsychopharmacology 37:1816–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Strickland TL, Mena I, Villanueva-Meyer J, Miller BL, Cummings J, Mehringer CM, Satz P, Myers H (1993) Cerebral perfusion and neuropsychological consequences of chronic cocaine use. J Neuropsychiatry Clin Neurosci 5:419–427

    Article  CAS  PubMed  Google Scholar 

  • Sutherland MT, McHugh MJ, Pariyadath V, Stein EA (2012) Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage 62:2281–2295

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomasi D, Volkow ND, Wang R, Carrillo JH, Maloney T, Alia-Klein N, Woicik PA, Telang F, Goldstein RZ (2010) Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS ONE 5:e10815

    Article  PubMed Central  PubMed  Google Scholar 

  • Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K (1988) Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 152:641–648

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Goldstein RZ, Alia-Klein N, Wong C (2011) Reduced metabolism in brain “control networks” following cocaine-cues exposure in female cocaine abusers. PLoS ONE 6:e16573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilcox KM, Lindsey KP, Votaw JR, Goodman MM, Martarello L, Carroll FI, Howell LL (2002) Self-administration of cocaine and the cocaine analog RTI-113: relationship to dopamine transporter occupancy determined by PET neuroimaging in rhesus monkeys. Synapse 43:78–85

    Article  CAS  PubMed  Google Scholar 

  • Wilcox KM, Kimmel HL, Lindsey KP, Votaw JR, Goodman MM, Howell LL (2005) In vivo comparison of the reinforcing and dopamine transporter effects of local anesthetics in rhesus monkeys. Synapse 58:220–228

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR (2011) Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug Alcohol Depend 115:137–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank both Juliet Brown and Lisa Neidert for their expert technical assistance. These studies were supported by USPHS grants DA010344, DA034232, DA031246, and RR00165. They were furthermore supported by an award (UL1RR025008) from the Atlanta Clinical and Translational Science Institute and by the Office of Research Infrastructure Programs ODP51OD11132.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Howell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murnane, K.S., Gopinath, K.S., Maltbie, E. et al. Functional connectivity in frontal-striatal brain networks and cocaine self-administration in female rhesus monkeys. Psychopharmacology 232, 745–754 (2015). https://doi.org/10.1007/s00213-014-3709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3709-9

Keywords

Navigation