Skip to main content
Log in

Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Type-3 metabotropic glutamate receptor gene (GRM3) single nucleotide polymorphisms (SNPs) have been associated with cognitive performance and prefrontal cortex brain activity in chronically treated schizophrenia patients. Whether these SNPs are associated with cognitive and symptom response to antipsychotic therapy has not been extensively evaluated.

Objectives

The aim of the study was to examine pharmacogenetic relationships between GRM3 and selected variants in relevant dopamine genes with changes in spatial working memory and clinical symptoms after treatment.

Methods

Sixty-one untreated first-episode schizophrenia patients were assessed before and after 6 weeks of antipsychotic pharmacotherapy, primarily consisting of risperidone. Patients’ level of cognitive performance on a spatial working memory task was assessed with a translational oculomotor paradigm. Changes after treatment in cognitive and clinical measures were examined in relationship to genetic polymorphisms in the GRM3, COMT, and DRD2/ANKK1 gene regions.

Results

Spatial working memory performance worsened after antipsychotic treatment. This worsening was associated with GRM3 rs1468412, with the genetic subgroup of patients known to have altered glutamate activity having greater adverse changes in working memory performance after antipsychotic treatment. Negative symptom improvement was associated with GRM3 rs6465084. There were no pharmacogenetic associations between DRD2/ANKK1 and COMT with working memory changes or symptom response to treatment.

Conclusions

These findings suggest important pharmacogenetic relationships between GRM3 variants and changes in cognition and symptom response with exposure to antipsychotics. This information may be useful in identifying patients susceptible to adverse cognitive outcomes associated with antipsychotic treatment and suggest that glutamatergic mechanisms contribute to such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    Article  CAS  PubMed  Google Scholar 

  • Amitai N, Markou A (2010) Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. Eur J Pharmacol 639:67–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC (2010) Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 67(3):255–62

  • Arinami T, Gao M, Hamaguchi H, Toru M (1997) A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 6:577–582

    Article  CAS  PubMed  Google Scholar 

  • Aultman JM, Moghaddam B (2001) Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology (Berl) 153:353–364

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Taurisano P, Pisciotta NM, Blasi G, Fazio L, Romano R, Gelao B, Lo Bianco L, Lozupone M, Di Giorgio A, Caforio G, Sambataro F, Niccoli-Asabella A, Papp A, Ursini G, Sinibaldi L, Popolizio T, Sadee W, Rubini G (2010) Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS ONE 5:e9348

    Article  PubMed Central  PubMed  Google Scholar 

  • Bespalov A, Jongen-Relo AL, van Gaalen M, Harich S, Schoemaker H, Gross G (2007) Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs. J Pharmacol Exp Ther 320:944–950

    Article  CAS  PubMed  Google Scholar 

  • Bishop JR, Ellingrod VL, Moline J, Miller D (2005) Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 77:253–260

    Article  PubMed  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  CAS  PubMed  Google Scholar 

  • Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, McGuire PK (2014) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry 75(5):e11–e13

  • Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 101:12604–12609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, Stone JM (2012) Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology 37:2515–2521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Bell C, Nos L, Fried P, Pearce DA, Singh S, Siderovski DP, Willard FS, Fukuda M (2006) Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology 31:1888–1899

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ, Novak J, Engel RH (2012) Comparative gene expression study of the chronic exposure to clozapine and haloperidol in rat frontal cortex. Schizophr Res 134:211–218

    Article  PubMed  Google Scholar 

  • Fijal BA, Kinon BJ, Kapur S, Stauffer VL, Conley RR, Jamal HH, Kane JM, Witte MM, Houston JP (2009) Candidate-gene association analysis of response to risperidone in African-American and white patients with schizophrenia. Pharmacogenomics J 9:311–318

    Article  CAS  PubMed  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1995) Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-P). New York State Psychiatric Institute, New York

    Google Scholar 

  • Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461

    CAS  PubMed  Google Scholar 

  • Gauderman W, Morrison J (2006) QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies, http://hydra.usc.edu/gxe

  • Ghose S, Gleason KA, Potts BW, Lewis-Amezcua K, Tamminga CA (2009) Differential expression of metabotropic glutamate receptors 2 and 3 in schizophrenia: a mechanism for antipsychotic drug action? Am J Psychiatry 166:812–820

    Article  PubMed Central  PubMed  Google Scholar 

  • Giri VN, Egleston B, Ruth K, Uzzo RG, Chen DY, Buyyounouski M, Raysor S, Hooker S, Torres JB, Ramike T, Mastalski K, Kim TY, Kittles R (2009) Race, genetic West African ancestry, and prostate cancer prediction by prostate-specific antigen in prospectively screened high-risk men. Cancer Prev Res (Phila Pa) 2:244–250

    Article  CAS  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184:31–38

    Article  CAS  PubMed  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    Article  CAS  PubMed  Google Scholar 

  • Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 67:e12

    Article  PubMed  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill SK, Reilly JL, Harris MS, Khine T, Sweeney JA (2008) Oculomotor and neuropsychological effects of antipsychotic treatment for schizophrenia. Schizophr Bull 34:494–506

    Article  PubMed Central  PubMed  Google Scholar 

  • Hill SK, Reilly JL, Keefe RS, Gold JM, Bishop JR, Gershon ES, Tamminga CA, Pearlson GD, Keshavan MS, Sweeney JA (2013) Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am J Psychiatry 170:1275–1284

    Article  PubMed  Google Scholar 

  • Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V (2011) Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 68:128–137

    Article  PubMed Central  PubMed  Google Scholar 

  • Hooker S, Hernandez W, Chen H, Robbins C, Torres JB, Ahaghotu C, Carpten J, Kittles RA (2010) Replication of prostate cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 70:270–275

    CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011) Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology (Berl) 217:13–24

    Article  CAS  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  CAS  PubMed  Google Scholar 

  • Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 4:290–296

    Article  CAS  PubMed  Google Scholar 

  • Kalkstein S, Hurford I, Gur RC (2010) Neurocognition in schizophrenia. Curr Top Behav Neurosci 4:373–390

    Article  PubMed  Google Scholar 

  • Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ (2014) The UCSC Genome Browser database: 2014 update. Nucleic Acids Res 42:D764–D770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW (1994) Changes in caudate volume with neuroleptic treatment. Lancet 344:1434

    Article  CAS  PubMed  Google Scholar 

  • Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR, Lewis DA (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63:759–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krystal JH, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB Jr, Vegso S, Heninger GR, Charney DS (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology (Berl) 145:193–204

    Article  CAS  Google Scholar 

  • Krystal JH, Perry EB Jr, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, Cooper TB, Macdougall L, Abi-Saab W, D'Souza DC (2005) Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62:985–994

    Article  CAS  PubMed  Google Scholar 

  • Kupfer SS, Torres JB, Hooker S, Anderson JR, Skol AD, Ellis NA, Kittles RA (2009) Novel single nucleotide polymorphism associations with colorectal cancer on chromosome 8q24 in African and European Americans. Carcinogenesis 30:1353–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kupfer SS, Anderson JR, Hooker S, Skol A, Kittles RA, Keku TO, Sandler RS, Ellis NA (2010) Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology 139(5):1677–85, 1685.e1–8

  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  CAS  PubMed  Google Scholar 

  • Lencz T, Robinson DG, Xu K, Ekholm J, Sevy S, Gunduz-Bruce H, Woerner MG, Kane JM, Goldman D, Malhotra AK (2006) DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry 163:529–531

    Article  PubMed  Google Scholar 

  • Liddle PF (2000) Cognitive impairment in schizophrenia: its impact on social functioning. Acta Psychiatr Scand Suppl 400:11–16

    Article  CAS  PubMed  Google Scholar 

  • Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H, Yue Q, Huang X, Chan RC, Collier DA, Meda SA, Pearlson G, Mechelli A, Sweeney JA, Gong Q (2010) Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging. Arch Gen Psychiatry 67:783–792

    Article  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP, Hogarty GE, Steingard S (1991) Optimal dose of neuroleptic in acute schizophrenia. A controlled study of the neuroleptic threshold and higher haloperidol dose. Arch Gen Psychiatry 48:739–745

    Article  CAS  PubMed  Google Scholar 

  • Mishara AL, Goldberg TE (2004) A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol Psychiatry 55:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B (2004) Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 174:39–44

    Article  CAS  Google Scholar 

  • Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann N Y Acad Sci 1003:131–137

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF, Rujescu D, Weinberger DR (2007) Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet 120:889–906

    Article  CAS  PubMed  Google Scholar 

  • Overall JE, Gorham DE (1961) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reilly JL, Harris MS, Keshavan MS, Sweeney JA (2005) Abnormalities in visually guided saccades suggest corticofugal dysregulation in never-treated schizophrenia. Biol Psychiatry 57:145–154

    Article  PubMed  Google Scholar 

  • Reilly JL, Harris MS, Keshavan MS, Sweeney JA (2006) Adverse effects of risperidone on spatial working memory in first-episode schizophrenia. Arch Gen Psychiatry 63:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Reilly JL, Harris MS, Khine TT, Keshavan MS, Sweeney JA (2007) Antipsychotic drugs exacerbate impairment on a working memory task in first-episode schizophrenia. Biol Psychiatry 62:818–821

    Article  CAS  PubMed  Google Scholar 

  • Reilly JL, Harris MS, Khine TT, Keshavan MS, Sweeney JA (2008a) Reduced attentional engagement contributes to deficits in prefrontal inhibitory control in schizophrenia. Biol Psychiatry 63:776–783

    Article  PubMed Central  PubMed  Google Scholar 

  • Reilly JL, Lencer R, Bishop JR, Keedy S, Sweeney JA (2008b) Pharmacological treatment effects on eye movement control. Brain Cogn 68:415–435

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren W, Lui S, Deng W, Li F, Li M, Huang X, Wang Y, Li T, Sweeney JA, Gong Q (2013) Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. Am J Psychiatry 170:1308–1316

    Article  PubMed  Google Scholar 

  • Rhoades HM, Overall JE (1988) The semistructured BPRS interview and rating guide. Psychopharmacol Bull 24:101–104

    CAS  PubMed  Google Scholar 

  • Riedel M, Schennach-Wolff R, Musil R, Dehning S, Cerovecki A, Opgen-Rhein M, Matz J, Seemuller F, Obermeier M, Engel RR, Muller N, Moller HJ, Spellmann I (2010) Neurocognition and its influencing factors in the treatment of schizophrenia-effects of aripiprazole, olanzapine, quetiapine and risperidone. Hum Psychopharmacol 25:116–125

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    CAS  PubMed  Google Scholar 

  • Simpson GM, Angus JW (1970) A rating scale for extrapyramidal side effects. Acta Psychiatr Scand Suppl 212:11–19

    Article  CAS  PubMed  Google Scholar 

  • Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci U S A 104:12536–12541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151

    Article  CAS  PubMed  Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487:288–298

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Ma D, Hu J, Tang C, Wu Z, Liu L, Xin F (2012) Effect of metabotropic glutamate receptor 3 genotype on N-acetylaspartate levels and neurocognition in non-smoking, active alcoholics. Behav Brain Funct 8:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Jang JK, Kim JH (2008) Blockade of group II metabotropic glutamate receptors produces hyper-locomotion in cocaine pre-exposed rats by interactions with dopamine receptors. Neuropharmacology 55:555–559

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Powell SB, Geyer MA (2012) Mouse pharmacological models of cognitive disruption relevant to schizophrenia. Neuropharmacology 62:1381–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JP, Lencz T, Malhotra AK (2010) D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry 167:763–772

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Ovidio DeLeon, Gretchen Haas, Robert Marvin, Debra Montrose, Cherise Rosen, Hugo Solari, Peter Weiden, and the clinical core staff of the Center for the Neuroscience of Mental Disorders (MH45156, David Lewis MD, Director) for their contributions to diagnostic and psychopathological assessments. Main results of this study were presented at the Pharmacogenomics in Psychiatry Annual Meeting 2013. This study was supported by the National Institute of Health (NIH) grants MH083888, MH062134, MH083126, MH45156, MH63480, RR024153, CTSA Grant UL1TR000050 and NIH/NCRR/GCRC Grant RR00056, American College of Clinical Pharmacy, Vahlteich Foundation, Janssen Pharmaceuticals, and the Alexander von Humboldt Foundation. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Disclosures

Dr. Bishop has received research funding from Ortho-McNeil Janssen and is on an advisory board for Physician’s Choice Laboratory Services. Dr. Sweeney has received research support from Ortho-McNeil Janssen and has been a consultant to Roche, Pfizer, Takeda, Bristol-Myers Squibb, and Eli Lilly. Dr. Keshavan has received research grant support from Sunovion. Dr. Reilly has received research grant support from Naurex, Inc. The other authors report no disclosures or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Bishop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 112 kb)

Supplementary Table 2

(DOC 92 kb)

Supplementary Table 3

(DOC 92 kb)

Supplementary Table 4

(DOC 92 kb)

Supplementary Table 5

(DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, J.R., Reilly, J.L., Harris, M.S.H. et al. Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia. Psychopharmacology 232, 145–154 (2015). https://doi.org/10.1007/s00213-014-3649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3649-4

Keywords

Navigation