Advertisement

Psychopharmacology

, Volume 232, Issue 1, pp 135–144 | Cite as

Levodopa administration modulates striatal processing of punishment-associated items in healthy participants

  • Bianca C. Wittmann
  • Mark D’Esposito
Original Investigation

Abstract

Rationale

Appetitive and aversive processes share a number of features such as their relevance for action and learning. On a neural level, reward and its predictors are associated with increased firing of dopaminergic neurons, whereas punishment processing has been linked to the serotonergic system and to decreases in dopamine transmission. Recent data indicate, however, that the dopaminergic system also responds to aversive stimuli and associated actions.

Objectives

In this pharmacological functional magnetic resonance imaging study, we investigated the contribution of the dopaminergic system to reward and punishment processing in humans.

Methods

Two groups of participants received either placebo or the dopamine precursor levodopa and were scanned during alternating reward and punishment anticipation blocks.

Results

Levodopa administration increased striatal activations for cues presented in punishment blocks. In an interaction with individual personality scores, levodopa also enhanced striatal activation for punishment–predictive compared with neutral cues in participants scoring higher on the novelty-seeking dimension.

Conclusions

These data support recent indications that dopamine contributes to punishment processing and suggest that the novelty-seeking trait is a measure of susceptibility to drug effects on motivation. These findings are also consistent with the possibility of an inverted U-shaped response function of dopamine in the striatum, suggesting an optimal level of dopamine release for motivational processing.

Keywords

Reward Punishment Striatum Levodopa Novelty-seeking 

Notes

Acknowledgments

We thank Matthew Brett and Bertram Walter for support with data analysis and Sharwin Tafazoli for help with data acquisition. This research was supported by NIH grant DA02060.

References

  1. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50:507–517PubMedCrossRefGoogle Scholar
  2. Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. Neuroimage 13:903–919PubMedCrossRefGoogle Scholar
  3. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395PubMedCrossRefGoogle Scholar
  5. Bolding MS, Reid MA, Avsar KB, Roberts RC, Gamlin PD, Gawne TJ, White DM, den Hollander JA, Lahti AC (2013) Magnetic transfer contrast accurately localizes substantia nigra confirmed by histology. Biol Psychiatry 73:289–294PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4894–4899PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bunzeck N, Duzel E (2006) Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51:369–379PubMedCrossRefGoogle Scholar
  9. Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Front Behav Neurosci 3:21PubMedCentralPubMedCrossRefGoogle Scholar
  10. Clatworthy PL, Lewis SJG, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron J-C, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696PubMedCrossRefGoogle Scholar
  11. Cloninger CR, Przybeck TR, Svrakic DM (1991) The tridimensional personality questionnaire: U.S. normative data. Psychol Rep 69:1047–1057PubMedCrossRefGoogle Scholar
  12. Cohen MX, Schoene-Bake JC, Elger CE, Weber B (2009) Connectivity-based segregation of the human striatum predicts personality characteristics. Nat Neurosci 12:32–34PubMedCrossRefGoogle Scholar
  13. Cools R, D'Esposito M (2011) Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cools R, Sheridan M, Jacobs E, D'Esposito M (2007) Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 27:5506–5514PubMedCrossRefGoogle Scholar
  15. Crevoisier C, Hoevels B, Zurcher G, Da Prada M (1987) Bioavailability of l-dopa after Madopar HBS administration in healthy volunteers. Eur Neurol 27(Suppl 1):36–46PubMedCrossRefGoogle Scholar
  16. Dang LC, O'Neil JP, Jagust WJ (2012) Genetic effects on behavior are mediated by neurotransmitters and large-scale neural networks. Neuroimage 66C:203–214Google Scholar
  17. Delgado MR, Li J, Schiller D, Phelps EA (2008) The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond B Biol Sci 363:3787–3800PubMedCentralPubMedCrossRefGoogle Scholar
  18. Duzel E, Yonelinas AP, Mangun GR, Heinze HJ, Tulving E (1997) Event-related brain potential correlates of two states of conscious awareness in memory. Proc Natl Acad Sci U S A 94:5973–5978PubMedCentralPubMedCrossRefGoogle Scholar
  19. Duzel E, Bunzeck N, Guitart-Masip M, Wittmann B, Schott BH, Tobler PN (2009) Functional imaging of the human dopaminergic midbrain. Trends Neurosci 32:321–328PubMedCrossRefGoogle Scholar
  20. Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, Heinze HJ, Schoenfeld MA (2004) Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. Neuroimage 21:229–235PubMedCrossRefGoogle Scholar
  21. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40PubMedCrossRefGoogle Scholar
  22. Geng DY, Li YX, Zee CS (2006) Magnetic resonance imaging-based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson's disease. Neurosurgery 58:256–262PubMedCrossRefGoogle Scholar
  23. Gjedde A, Kumakura Y, Cumming P, Linnet J, Moller A (2010) Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci U S A 107:3870–3875PubMedCentralPubMedCrossRefGoogle Scholar
  24. Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci 108:15647–15654PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gorwood P, Le Strat Y, Ramoz N, Dubertret C, Moalic JM, Simonneau M (2012) Genetics of dopamine receptors and drug addiction. Hum Genet 131:803–822PubMedCrossRefGoogle Scholar
  26. Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, Duzel E (2011) Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. J Neurosci 31:7867–7875PubMedCentralPubMedCrossRefGoogle Scholar
  27. Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan RJ (2012) Action controls dopaminergic enhancement of reward representations. Proc Natl Acad Sci U S A 109:7511–7516PubMedCentralPubMedCrossRefGoogle Scholar
  28. Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage 47:194–198PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hutchison KE, Wood MD, Swift R (1999) Personality factors moderate subjective and psychophysiological responses to d-amphetamine in humans. Exp Clin Psychopharmacol 7:493–501PubMedCrossRefGoogle Scholar
  30. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16:217–240PubMedCrossRefGoogle Scholar
  31. Hutton C, Deichmann R, Turner R, Andersson JLR (2004) Combined correction for geometric distortion and its interaction with head motion in fMRI Proceedings of ISMRM 12, Kyoto, Japan, pp 1084Google Scholar
  32. Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S (2003) Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40:1251–1257PubMedCrossRefGoogle Scholar
  33. Jensen J, Smith AJ, Willeit M, Crawley AP, Mikulis DJ, Vitcu I, Kapur S (2007) Separate brain regions code for salience vs. valence during reward prediction in humans. Hum Brain Mapp 28:294–302PubMedCrossRefGoogle Scholar
  34. Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H (2008) Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 28:11673–11684PubMedCrossRefGoogle Scholar
  35. Jupp B, Dalley JW (2014) Behavioral endophenotypes of drug addiction: etiological insights from neuroimaging studies. Neuropharmacology 76(Part B):487–497PubMedCrossRefGoogle Scholar
  36. Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29:7364–7378PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kimberg DY, D'Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585PubMedCrossRefGoogle Scholar
  38. Knecht S, Breitenstein C, Bushuven S, Wailke S, Kamping S, Floel A, Zwitserlood P, Ringelstein EB (2004) Levodopa: faster and better word learning in normal humans. Ann Neurol 56:20–26PubMedCrossRefGoogle Scholar
  39. Krawczyk DC, D'Esposito M (2013) Modulation of working memory function by motivation through loss-aversion. Hum Brain Mapp 34:762–774PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lammel S, Ion Daniela I, Roeper J, Malenka Robert C (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862PubMedCentralPubMedCrossRefGoogle Scholar
  41. Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27:1027–1035PubMedCrossRefGoogle Scholar
  42. Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67:145–163PubMedGoogle Scholar
  43. Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–841PubMedCentralPubMedCrossRefGoogle Scholar
  44. Menon M, Jensen J, Vitcu I, Graff-Guerrero A, Crawley A, Smith MA, Kapur S (2007) Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: effects of dopaminergic modulation. Biol Psychiatry 62:765–772PubMedCrossRefGoogle Scholar
  45. Metereau E, Dreher JC (2013) Cerebral correlates of salient prediction error for different rewards and punishments. Cereb Cortex 23:477–487PubMedCrossRefGoogle Scholar
  46. Netter P (2006) Dopamine challenge tests as an indicator of psychological traits. Hum Psychopharmacol 21:91–99PubMedCrossRefGoogle Scholar
  47. Nikolova YS, Ferrell RE, Manuck SB, Hariri AR (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 36:1940–1947PubMedCentralPubMedCrossRefGoogle Scholar
  48. Noble EP, Ozkaragoz TZ, Ritchie TL, Zhang X, Belin TR, Sparkes RS (1998) D2 and D4 dopamine receptor polymorphisms and personality. Am J Med Genet 81:257–267PubMedCrossRefGoogle Scholar
  49. Oswal A, Litvak V, Sauleau P, Brown P (2012) Beta reactivity, prospective facilitation of executive processing, and its dependence on dopaminergic therapy in Parkinson's disease. J Neurosci 32:9909–9916PubMedCentralPubMedCrossRefGoogle Scholar
  50. Penny W, Henson R (2007) Analysis of variance. In: Friston KJ, Ashburner J, Kiebel SJ, Nichols TE, Penny W (eds) Statistical parametric mapping: the analysis of functional brain images. Elsevier Academic Press, AmsterdamGoogle Scholar
  51. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045PubMedCentralPubMedCrossRefGoogle Scholar
  52. Piazza P, Deminiere J, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513PubMedCrossRefGoogle Scholar
  53. Riba J, Kramer UM, Heldmann M, Richter S, Munte TF (2008) Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS One 3:e2479PubMedCentralPubMedCrossRefGoogle Scholar
  54. Sax KW, Strakowski SM (1998) Enhanced behavioral response to repeated d-amphetamine and personality traits in humans. Biol Psychiatry 44:1192–1195PubMedCrossRefGoogle Scholar
  55. Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, Seidenbecher CI, Coenen HH, Heinze HJ, Zilles K, Duzel E, Bauer A (2008) Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci 28:14311–14319PubMedCrossRefGoogle Scholar
  56. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  57. Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, Friston KJ, Frackowiak RS (2004) Temporal difference models describe higher-order learning in humans. Nature 429:664–667PubMedCrossRefGoogle Scholar
  58. Seymour B, Daw N, Dayan P, Singer T, Dolan R (2007) Differential encoding of losses and gains in the human striatum. J Neurosci 27:4826–4831PubMedCentralPubMedCrossRefGoogle Scholar
  59. Stice E, Yokum S, Burger K, Epstein L, Smolen A (2012) Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 32:10093–10100PubMedCentralPubMedCrossRefGoogle Scholar
  60. Tambasco N, Belcastro V, Sarchielli P, Floridi P, Pierguidi L, Menichetti C, Castrioto A, Chiarini P, Parnetti L, Eusebi P, Calabresi P, Rossi A (2011) A magnetization transfer study of mild and advanced Parkinson’s disease. Eur J Neurol 18:471–477PubMedCrossRefGoogle Scholar
  61. Tobler PN, Dickinson A, Schultz W (2003) Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci 23:10402–10410PubMedGoogle Scholar
  62. Tulving E (1985) Memory and consciousness. Can Psychol 26:1–12CrossRefGoogle Scholar
  63. Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD (2014) Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci 37:85–94PubMedCrossRefGoogle Scholar
  64. Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Duzel E (2005) Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 45:459–467PubMedCrossRefGoogle Scholar
  65. Wittmann BC, Schiltz K, Boehler CN, Duzel E (2008) Mesolimbic interaction of emotional valence and reward improves memory formation. Neuropsychologia 46:1000–1008PubMedCrossRefGoogle Scholar
  66. Wittmann BC, Dolan RJ, Düzel E (2011) Behavioral specifications of reward-associated long-term memory enhancement in humans. Learn Mem 18:296–300PubMedCentralPubMedCrossRefGoogle Scholar
  67. Wittmann BC, Tan GC, Lisman JE, Dolan RJ, Düzel E (2013) DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment. Neuropsychologia 51:2184–2193PubMedCentralPubMedCrossRefGoogle Scholar
  68. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144PubMedCrossRefGoogle Scholar
  69. Ye Z, Hammer A, Camara E, Münte TF (2011) Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp 32:800–811PubMedCrossRefGoogle Scholar
  70. Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, Shelby ES, Smith CE, McHugo M, Kessler RM (2008) Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 28:14372–14378PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PsychologyUniversity of GiessenGiessenGermany
  3. 3.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Psychology and Sports ScienceJustus Liebig University GiessenGiessenGermany

Personalised recommendations