Advertisement

Psychopharmacology

, Volume 232, Issue 1, pp 101–113 | Cite as

Higher sensitivity to the conditioned rewarding effects of cocaine and MDMA in High-Novelty-Seekers mice exposed to a cocaine binge during adolescence

  • A. Mateos-García
  • C. Roger-Sánchez
  • M. Rodriguez-Arias
  • J. Miñarro
  • M. A. Aguilar
  • C. Manzanedo
  • M. C. ArenasEmail author
Original Investigation

Abstract

Rationale

Exposure to drugs during adolescence can induce alterations in the central nervous system. The novelty-seeking personality trait influences differences observed among individuals exposed to drugs of abuse.

Objectives

Long-term effects of intensive pre-treatment with cocaine during adolescence or adulthood were evaluated in High- and Low-Novelty Seeker (HNS and LNS) mice. It was hypothesized that a cocaine binge during adolescence would increase sensitivity to the rewarding effects of cocaine and MDMA, especially in HNS animals, and modify the spontaneous behaviour of adult animals.

Methods

Adolescent (PND 33) and adult (PND 60) mice were identified as HNS or LNS according to their performance in the hole-board test. Subsequently, they received pre-treatment with cocaine (three injections per day of an increasing dose for 10 days) or saline. Three weeks later, the mice performed the hole-board, elevated plus maze, spontaneous locomotor activity and cocaine- (1 mg/kg) or MDMA- (1.25 mg/kg) induced conditioning place preference (CPP) tests. In another set of mice, the effects of pre-treatment of cocaine during adulthood on MDMA- or cocaine-induced CPP were also evaluated 3 weeks later.

Results

Only HNS mice treated with cocaine during adolescence acquired MDMA- or cocaine-induced CPP in adulthood. Moreover, pre-exposure to cocaine during adolescence caused subsequent behavioural alterations, including reduced exploratory behaviour and increased locomotor reactivity.

Conclusions

Cocaine binge administration during adolescence induces a higher sensitivity to the rewarding effects of MDMA and cocaine in HNS mice in adulthood. This may explain the greater vulnerability often seen among individuals exposed early in life to drugs of abuse.

Keywords

Cocaine MDMA Novelty-seeking CPP Adolescence Mice 

Notes

Acknowledgments

We wish to thank Mr. Brian Normanly for his editing of the manuscript. This work was supported by the following research grants: Ministerio de Economía y Competitividad, Dirección General de Investigación (PSI2011-24762), Instituto de Salud ‘Carlos III’ (FIS), RETICS, Red de Trastornos Adictivos (RD06/001/0016) and Generalitat Valenciana, Conselleria de Educación (PROMETEO/2009/072), Spain.

References

  1. Abreu-Villaça Y, Queiroz-Gomes FE, Dal Monte AP, Filgueiras CC, Manhães AC (2006) Individual differences in novelty-seeking behavior but not in anxiety response to a new environment can predict nicotine consumption in adolescent C57BL/6 mice. Behav Brain Res 15(167):175–182. doi: 10.1016/j.bbr.2005.09.003 CrossRefGoogle Scholar
  2. Arenas MC, Daza-Losada M, Vidal-Infer A, Aguilar MA, Miñarro J, Rodríguez-Arias M (2014) in press, Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaineGoogle Scholar
  3. Badanich KA, Adler KJ, Kirstein CL (2006) Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. Eur J Pharmacol 550:95–106. doi: 10.1016/j.ejphar.2006.08.034 PubMedCrossRefGoogle Scholar
  4. Ballaz SJ, Akil H, Watson SJ (2007) Previous experience affects subsequent anxiety-like responses in rats bred for novelty seeking. Behav Neurosci 121:1113–1118. doi: 10.1037/0735-7044.121.5.1113 PubMedCrossRefGoogle Scholar
  5. Belin D, Mar A, Dalley J, Robbins T, Everitt B (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355. doi: 10.1126/science.1158136 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V (2011) High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 36:569–579. doi: 10.1038/npp.2010.188 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bevins RA, Besheer J (2005) Novelty reward as a measure of anhedonia. Neurosci Biobehav Rev 29:707–714. doi: 10.1016/j.neubiorev.2005.03.013 PubMedCrossRefGoogle Scholar
  8. Bird J, Schenk S (2013) Contribution of impulsivity and novelty-seeking to the acquisition and maintenance of MDMA self-administration. Addict Biol 18:654–664. doi: 10.1111/j.1369-1600.2012.00477.x PubMedCrossRefGoogle Scholar
  9. Black YD, Maclaren FR, Naydenov AV, Carlezon WA, Baxter MG, Konradi C (2006) Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence. J Neurosci 26:9656–9665. doi: 10.1523/JNEUROSCI.2391-06.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Blakemore SJ, Robbins TW (2012) Decision-making in the adolescent brain. Nat Neurosci 15:1184–1191. doi: 10.1038/nn.3177 PubMedCrossRefGoogle Scholar
  11. Boissier JR, Simon P (1962) The exploration reaction in the mouse. Preliminary note. Therapie 17:1225–1232PubMedGoogle Scholar
  12. Boissier JR, Simon P, Lwoff JM (1964) Use of a particular mouse reaction (hole-board method) for the study of psychotropic drugs. Therapie 19:571–583PubMedGoogle Scholar
  13. Brain PF, Benton D, Childs G, Parmigiani S (1981) The effect of the type of opponent in test of murine aggression. Behav Process 6:319–327. doi: 10.1016/0376-6357(81)90049-8 CrossRefGoogle Scholar
  14. Calabrese EJ (2008) An assessment of anxiolytic drug screening tests: Hormetic dose responses predominate. Crit Rev Toxicol 38:489–542. doi: 10.1080/10408440802014238 PubMedCrossRefGoogle Scholar
  15. Casey BJ, Jones RM (2010) Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J Am Acad Child Adolesc Psychiatry 49:1189–1201PubMedCentralPubMedGoogle Scholar
  16. Caster JM, Walker QD, Kuhn CM (2005) Enhanced behavioral response to repeated-dose cocaine in adolescent rats. Psychopharmacology 183:218–225. doi: 10.1007/s00213-005-0159-4 PubMedCrossRefGoogle Scholar
  17. Chefer VI, Zakharova I, Shippenberg TS (2003) Enhanced responsiveness to novelty and cocaine is associated with decreased basal dopamine uptake and release in the nucleus accumbens: Quantitative microdialysis in rats under transient conditions. J Neurosci 23:3076–3084PubMedGoogle Scholar
  18. Davis BA, Clinton SM, Akil H, Becker JB (2008) The effects of novelty-seeking phenotypes and sex differences on acquisition of cocaine self-administration in selectively-bred high-responder and low-responder rats. Pharmacol Biochem Behav 90:331–338. doi: 10.1016/j.pbb.2008.03.008 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Daza-Losada M, Rodríguez-Arias M, Aguilar MA, Miñarro J (2009) Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence. Addict Biol 14:447–456. doi: 10.1111/j.1369-1600.2009.00173.x PubMedCrossRefGoogle Scholar
  20. Dellu F, Piazza PV, Mayo W, Le Moal M, Simon H (1996) Novelty seeking in rats-biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 34:136–145PubMedCrossRefGoogle Scholar
  21. Ehrlich ME, Sommer J, Canas E, Unterwald EM (2002) Periadolescent mice show enhanced Delta FosB upregulation in response to cocaine and amphetamine. J Neurosci 22:9155–9159PubMedGoogle Scholar
  22. EMCDDA (2013) National report 2013 for the European Monitoring Centre for Drugs and Drug Addiction. Spanish Focal PointGoogle Scholar
  23. Erb SM, Parker LA (1994) Individual differences in novelty induced activity do not predict strength of amphetamine-induced place conditioning. Pharmacol Biochem Behav 48:581–586PubMedCrossRefGoogle Scholar
  24. Estelles J, Rodríguez-Arias M, Maldonado C, Aguilar MA, Miñarro J (2005) Prenatal cocaine exposure alters spontaneous and cocaine-induced motor and social behaviors. Neurotoxicol Teratol 27:449–457. doi: 10.1016/j.ntt.2005.01.002 PubMedCrossRefGoogle Scholar
  25. Estelles J, Lluch J, Rodriguez-Arias M, Aguilar MA, Minarro J (2007) Cocaine exposure during adolescence affects anxiety in adult mice. Brain Res Bull 71:393–403. doi: 10.1016/j.brainresbull.2006.10.008 PubMedCrossRefGoogle Scholar
  26. Gong W, Neill DB, Justine JB (1996) Locomotor response to novelty does not predict cocaine place preference conditioning in rats. Pharmacol Biochem Behav 53:191–196PubMedCrossRefGoogle Scholar
  27. Hooks MS, Jones GH, Smith AD, Neill DB, Justice JB (1991) Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse 9:121–128PubMedCrossRefGoogle Scholar
  28. Izenwasser S, Cox BM (1992) Inhibition of dopamine uptake by cocaine and nicotine - tolerance to chronic treatments. Brain Res 573:119–125. doi: 10.1016/0006-8993(92)90120-X PubMedCrossRefGoogle Scholar
  29. Kabbaj M (2006) Individual differences in vulnerability to drug abuse: the high responders/low responders model. CNS Neurol Disord Drug Targets 5:513–520. doi: 10.2174/187152706778559318 PubMedCrossRefGoogle Scholar
  30. Kabbaj M, Norton CS, Kollack-Walker S, Watson SJ, Robinson TE, Akil H (2001) Social defeat alters the acquisition of cocaine self-administration in rats: role of individual differences in cocaine-taking behaviour. Psychopharmacology 158:382–387. doi: 10.1007/s002130100918 PubMedCrossRefGoogle Scholar
  31. Kelley AE, Schochet T, Landry CF (2004) Risk taking and novelty seeking in adolescence: introduction to part I. Ann N Y Acad Sci 1021:27–32. doi: 10.1196/annals.1308.003 PubMedCrossRefGoogle Scholar
  32. Kenny PJ, Koob GF, Markou A (2003) Conditioned facilitation of brain reward function after repeated cocaine administration. Behav Neurosci 117:1103–1107. doi: 10.1037/0735-7044.117.5.1103 PubMedCrossRefGoogle Scholar
  33. Klebaur JE, Bardo MT (1999) Individual differences in novelty seeking on the playground maze predict amphetamine conditioned place preference. Pharmacol Biochem Behav 63:131–136PubMedCrossRefGoogle Scholar
  34. Klebaur JE, Bevins RA, Segar TM, Bardo MT (2001) Individual differences in behavioral responses to novelty and amphetamine self-administration in male and female rats. Behav Pharmacol 12:267–275PubMedCrossRefGoogle Scholar
  35. Kliethermes CL, Crabbe JC (2006) Pharmacological and genetic influences on hole-board behaviors in mice. Pharmacol Biochem Behav 85:57–65. doi: 10.1016/j.pbb.2006.07.007 PubMedCrossRefGoogle Scholar
  36. Kliethermes CL, Kamens HM, Crabbe JC (2007) Drug reward and intake in lines of mice selectively bred for divergent exploration of a hole board apparatus. Genes Brain Behav 6:608–618. doi: 10.1111/j.1601-183X.2006.00289.x PubMedCrossRefGoogle Scholar
  37. Kosten TA, Miserendino MJD (1998) Dissociation of novelty- and cocaine-conditioned locomotor activity from cocaine place conditioning. Pharmacol Biochem Behav 60:785–791PubMedCrossRefGoogle Scholar
  38. Lett BT (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology 98:357–362. doi: 10.1007/BF00451687 PubMedCrossRefGoogle Scholar
  39. Liu Y, Roberts DCS, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22:195–200. doi: 10.1111/j.1460-9568.2005.04195.x PubMedCentralPubMedCrossRefGoogle Scholar
  40. Maldonado C, Rodríguez-Arias M, Castillo A, Aguilar MA, Miñarro J (2006) Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behav Pharmacol 17:119–131. doi: 10.1097/01.fbp.0000190685.84984.ec PubMedCrossRefGoogle Scholar
  41. Manzanedo C, Rodríguez-Arias M, Daza-Losada M, Maldonado C, Aguilar MA, Miñarro J (2010) Effect of the CB1 cannabinoid agonist WIN 55212–2 on the acquisition and reinstatement of MDMA-induced conditioned place preference in mice. Behav Brain Funct 6:19–30. doi: 10.1186/1744-9081-6-19 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Manzanedo C, García-Pardo MP, Rodríguez-Arias M, Miñarro J, Aguilar MA (2012) Pre-treatment with high doses of cocaine decreases the reinforcing effects of cocaine in the conditioned place preference paradigm. Neurosci Lett 516:29–33. doi: 10.1016/j.neulet.2012.03.044 PubMedCrossRefGoogle Scholar
  43. Milivojevic D, Milovanovic SD, Jovanovic M, Svrakic DM, Svrakic NM, Svrakic SM, Cloninger CR (2012) Temperament and character modify risk of drug addiction and influence choice of drugs. Am J Addict 21:462–467. doi: 10.1111/j.1521-0391.2012.00251.x PubMedCrossRefGoogle Scholar
  44. Morgan D, Liu Y, Roberts DCS (2006) Rapid and persistent sensitization to the reinforcing effects of cocaine. Neuropsychopharmacology 31:121–128. doi: 10.1038/sj.npp.1300773 PubMedCrossRefGoogle Scholar
  45. Mugford RA, Nowell NW (1970) Pheromones and their effect on aggression in mice. Nature 226:967–968. doi: 10.1038/226967a0 PubMedCrossRefGoogle Scholar
  46. Nadal Alemany R (2008) La búsqueda de sensaciones y su relación con la vulnerabilidad a la adicción y al estrés. Adicciones 20:59–72PubMedGoogle Scholar
  47. Nadal R, Rotllant D, Marquez C, Armario A (2005) Perseverance of exploration in novel environments predicts morphine place conditioning in rats. Behav Brain Res 165:72–79. doi: 10.1016/j.bbr.2005.06.039 PubMedCrossRefGoogle Scholar
  48. Parsons LH, Simth AD, Justice JB (1991) Basal extracellular dopamine is decreased in the rat nucleus-accumbens during abstinence from chronic cocaine. Synapse 9:60–65. doi: 10.1002/syn.890090109 PubMedCrossRefGoogle Scholar
  49. Pelloux Y, Costentin J, Duterte-Boucher D (2006) Novelty preference predicts place preference conditioning to morphine and its oral consumption in rats. Pharmacol Biochem Behav 84:43–50. doi: 10.1016/j.pbb.2006.04.004 PubMedCrossRefGoogle Scholar
  50. Philpot RM, Wecker L (2008) Dependence of adolescent novelty-seeking behavior on response phenotype and effects of apparatus scaling. Behav Neurosci 122:861–875. doi: 10.1037/0735-7044.122.4.861 PubMedCrossRefGoogle Scholar
  51. Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513PubMedCrossRefGoogle Scholar
  52. Ribeiro Do Couto B, Rodríguez-Arias M, Fuentes S, Gagliano H, Armario A, Miñarro J, Aguilar MA (2011) Adolescent pre-exposure to ethanol or MDMA prolongs the conditioned rewarding effects of MDMA. Physiol Behav 103:585–593. doi: 10.1016/j.physbeh.2011.02.012 PubMedCrossRefGoogle Scholar
  53. Ribeiro Do Couto B, Daza-Losada M, Rodriguez-Arias M, Nadal R, Guerri C, Summavielle T, Miñarro J, Aguilar MA (2012) Adolescent pre-exposure to ethanol and 3,4-methylenedioxyethylamphetamine (MDMA) increases conditioned rewarding effects of MDMA and drug-induced reinstatement. Addict Biol 17:588–600. doi: 10.1111/j.1369-1600.2011.00382.x PubMedCrossRefGoogle Scholar
  54. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, Wee S, Koob G, Turecki G, Neve R, Thomas M, Nestler EJ (2013) Behavioral and structural responses to chronic cocaine require a feedforward loop involving Delta FosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 33:4295–4307PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810. doi: 10.1016/S0149-7634(96)00058-9 PubMedCrossRefGoogle Scholar
  56. Rodgers RJ, Johnson NJT (1995) Factor analysis of spatiotemporal and ethological measures in the murine plus-maze test of anxiety. Pharmacol Biochem Behav 52:297–303. doi: 10.1016/0091-3057(95)00138-M PubMedCrossRefGoogle Scholar
  57. Rodríguez-Arias M, Miñarro J, Aguilar MA, Pinazo J, Simón VM (1998) Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 8:95–103. doi: 10.1016/S0924-977X(97)00051-5 PubMedCrossRefGoogle Scholar
  58. Rodríguez-Arias M, Manzanedo C, Roger-Sánchez C, Do Couto BR, Aguilar MA, Miñarro J (2010) Effect of adolescent exposure to WIN 55212–2 on the acquisition and reinstatement of MDMA-induced conditioned place preference. Prog Neuropsychopharmacol Biol Psychiatry 34:166–171. doi: 10.1016/j.pnpbp.2009.10.019 PubMedCrossRefGoogle Scholar
  59. Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM (2009) Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology 206:1–21. doi: 10.1007/s00213-009-1585-5 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Shippenberg TS, Heidbreder C (1995a) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J Pharmacol Exp Ther 273:808–815PubMedGoogle Scholar
  61. Shippenberg TS, Heidbreder C (1995b) The delta-opioid receptor antagonist naltrindole prevents sensitization to the conditioned rewarding effects of cocaine. Eur J Pharmacol 280:55–61. doi: 10.1016/0014-2999(95)00185-N PubMedCrossRefGoogle Scholar
  62. Shippenberg TS, Heidbreder C, Lefevour A (1996) Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur J Pharmacol 299:33–39. doi: 10.1016/0014-2999(95)00852-7 PubMedCrossRefGoogle Scholar
  63. Shippenberg TS, LeFevour A, Thompson AC (1998) Sensitization to the conditioned rewarding effects of morphine and cocaine: differential effects of the K-opioid receptor agonist U69593. Eur J Pharmacol 345:27–34. doi: 10.1016/S0014-2999(97)01614-2 PubMedCrossRefGoogle Scholar
  64. Sillivan SE, Black YD, Naydenov AV, Vassoler FR, Hanlin RP, Konradi C (2011) Binge cocaine administration in adolescent rats affects amygdalar gene expression patterns and alters anxiety-related behavior in adulthood. Biol Psychiatry 70:583–592. doi: 10.1016/j.biopsych.2011.03.035 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Smoothy R, Brain PF, Berry MS, Haug M (1986) Alcohol and social behaviour in group housed female mice. Physiol Behav 37:689–694PubMedCrossRefGoogle Scholar
  66. Spear LP (2011) Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: setting the stage for alcohol use disorders? Child Dev Perspect 5:231–238. doi: 10.1111/j.1750-8606.2011.00182.x PubMedCentralPubMedCrossRefGoogle Scholar
  67. Staiger PK, Kambouropoulos N, Dawe S (2007) Should personality traits be considered when refining substance misuse treatment programs? Drug Alcohol Rev 26:17–23PubMedCrossRefGoogle Scholar
  68. Stansfield KH, Kirstein CL (2007) Chronic cocaine or ethanol exposure during adolescence alters novelty-related behaviors in adulthood. Pharmacol Biochem Behav 86:637–642. doi: 10.1016/j.pbb.2007.02.008 PubMedCrossRefGoogle Scholar
  69. Takeda H, Tsuji M, Matsumiya T (1998) Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350:21–29. doi: 10.1016/S0014-2999(98)00223-4 PubMedCrossRefGoogle Scholar
  70. Tanabe J, Tregellas JR, Dalwani M, Thompson L, Owens E, Crowley T, Banich M (2009) Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry 65:160–164. doi: 10.1016/j.biopsych.2008.07.030 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Vidal-Infer A, Arenas MC, Daza-Losada M, Aguilar MA, Miñarro J, Rodríguez-Arias M (2012) High novelty-seeking predicts greater sensitivity to the conditioned rewarding effects of cocaine. Pharmacol Biochem Behav 102:124–132. doi: 10.1016/j.pbb.2012.03.031 PubMedCrossRefGoogle Scholar
  72. Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, Alpert R, Hoff A (1991) Changes in brain glucose-metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626PubMedCrossRefGoogle Scholar
  73. Walker QD, Kuhn CM (2008) Cocaine increases stimulated dopamine release more in periadolescent than adult rats. Neurotoxicol Teratol 30:412–418. doi: 10.1016/j.ntt.2008.04.002 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Walker QD, Schramm-Sapyta NL, Caster JM, Waller ST, Brooks MP, Kuhn CM (2009) Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults. Pharmacol Biochem Behav 91:398–408. doi: 10.1016/j.pbb.2008.08.019 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW (2013) Adolescent cocaine exposure causes enduring macroscale changes in mouse brain structure. J Neurosci 33:1797–1803PubMedCrossRefGoogle Scholar
  76. Wittchen HU, Behrendt S, Hofler M, Perkonigg A, Lieb R, Buhringer G, Beesdo K (2008) What are the high risk periods for incident substance use and transitions to abuse and dependence? Implications for early intervention and prevention. Int J Methods Psychiatr 17:S16–S29. doi: 10.1002/mpr.254 CrossRefGoogle Scholar
  77. Yates JR, Marusich JA, Gipson CD, Beckmann JS, Bardo MT (2012) High impulsivity in rats predicts amphetamine conditioned place preference. Pharmacol Biochem Behav 100:370–376. doi: 10.1016/j.pbb.2011.07.012 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Zheng X, Ke X, Tan B, Luo X, Xu W, Yang X, Sui N (2003) Susceptibility to morphine place conditioning: relationship with stress-induced locomotion and novelty-seeking behavior in juvenile and adult rats. Pharmacol Biochem Behav 75:929–935. doi: 10.1016/S0091-3057(03)00172-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Mateos-García
    • 1
  • C. Roger-Sánchez
    • 1
  • M. Rodriguez-Arias
    • 1
  • J. Miñarro
    • 1
  • M. A. Aguilar
    • 1
  • C. Manzanedo
    • 1
  • M. C. Arenas
    • 1
    Email author
  1. 1.Unidad de investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de PsicologíaUniversitat de ValènciaValenciaSpain

Personalised recommendations