Skip to main content

Advertisement

Log in

Variation in AKR1C3, which encodes the neuroactive steroid synthetic enzyme 3α-HSD type 2 (17β-HSD type 5), moderates the subjective effects of alcohol

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Animal models suggest that neuroactive steroids contribute to alcohol’s acute effects. We previously reported that a common nonsynonymous polymorphism, AKR1C3*2 in the gene encoding the enzyme 3α-HSD2/17β-HSD5, and a synonymous single nucleotide polymorphism (SNP), rs248793, in SRD5A1, which encodes 5α-reductase, were associated with alcohol dependence (AD).

Objectives

The aim of the study was to investigate whether these polymorphisms moderate subjective effects of alcohol in humans and whether AKR1C3*2 affects neuroactive steroid synthesis.

Methods

Sixty-five Caucasian men (34 lighter and 31 heavier drinkers; mean age 26.2 years) participated in a double-blind laboratory study where they consumed drinks containing no ethanol or 0.8 g/kg of ethanol. Breath alcohol, heart rate (HR), and self-reported alcohol effects were measured at 40-min intervals, and genotype was examined as a moderator of alcohol’s effects. Levels of the neuroactive steroid 5α-androstane-3α,17β-diol and its precursors, 3α,5α-androsterone and dihydrotestosterone, were measured at study entry using GC/MS.

Results

Initially, carriers of the AD-protective AKR1C3*2 G allele had higher levels of 5α-androstane-3α,17β-diol relative to the precursor 3α,5α-androsterone than C allele homozygotes. AKR1C3*2 G allele carriers exhibited greater increases in heart rate and stimulant and sedative effects of alcohol than C allele homozygotes. The genotype effects on sedation were observed only in heavier drinkers. The only effect of the SRD5A1 SNP was to moderate HR. There were no interactive effects of the two SNPs.

Conclusions

The observed effects of variation in a gene encoding a neuroactive steroid biosynthetic enzyme on the rate of 17β-reduction of androsterone relative to androstanediol and on alcohol’s sedative effects may help to explain the association of AKR1C3*2 with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamski J, Jakob FJ (2001) A guide to 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 171:1–4

    Article  CAS  PubMed  Google Scholar 

  • Addicott MA, Marsh-Richard DM, Mathias CW, Dougherty DM (2007) The biphasic effects of alcohol: comparisons of subjective and objective measures of stimulation, sedation, and physical activity. Alcohol Clin Exp Res 31:1883–1890

    Article  CAS  PubMed  Google Scholar 

  • Barbaccia ML, Affricano D, Trabucchi M, Purdy RH, Colombo G, Agabio R, Gessa GL (1999) Ethanol markedly increases “GABAergic” neurosteroids in alcohol-preferring rats. Eur J Pharmacol 384:R1–R2

    Article  CAS  PubMed  Google Scholar 

  • Bauer LO, Hesselbrock VM (1993) EEG, autonomic and subjective correlates of the risk for alcoholism. J Stud Alcohol 54:577–589

    CAS  PubMed  Google Scholar 

  • Cagetti E, Pinna G, Guidotti A, Baicy K, Olsen RW (2004) Chronic intermittent ethanol (CIE) administration in rats decreases levels of neurosteroids in hippocampus, accompanied by altered behavioral responses to neurosteroids and memory function. Neuropharmacology 46:570–579

    Article  CAS  PubMed  Google Scholar 

  • Carver CM, Reddy DS (2013) Neurosteroid interactions with synaptic and extrasynaptic GABA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology 230:151–188

    Article  CAS  PubMed  Google Scholar 

  • Clark RV, Hermann DJ, Cunningham GR, Wilson TH, Morrill BB, Hobbs S (2004) Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor. J Clin Endocrinol Metab 89:2179–2184

    Article  CAS  PubMed  Google Scholar 

  • Cook JB, Dumitru AM, O’Buckley TK, Morrow AL (2014a) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    Article  CAS  PubMed  Google Scholar 

  • Cook JB, Nelli SM, Neighbors MR, Morrow DH, O’Buckley TK, Maldonado-Devincci AM, Morrow AL (2014b) Ethanol alters local cellular levels of (3a5a)-3-hydroxypregnan-20-one (3a5a-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacology. doi:10.1038/npp.2014.46

    Google Scholar 

  • Covault J, Pond T, Feinn R, Arias A, Oncken C, Kranzler H (2014) Dutasteride reduces alcohol’s sedative effects in men in a human laboratory setting and reduces drinking in the natural environment. Psychopharmacology. doi:10.1007/s00213-014-3487-4

    Google Scholar 

  • Devor EJ, Cloninger CR (1989) Genetics of alcoholism. Annu Rev Genet 23:19–36

    Article  CAS  PubMed  Google Scholar 

  • Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V (1999) Characteristics of a highly labile human type 5 17beta-hydroxysteroid dehydrogenase. Endocrinology 140:568–574

    CAS  PubMed  Google Scholar 

  • Duranceaux NC, Schuckit MA, Eng MY, Robinson SK, Carr LG, Wall TL (2006) Associations of variations in alcohol dehydrogenase genes with the level of response to alcohol in non-Asians. Alcohol Clin Exp Res 30(9):1470–1478

    Article  CAS  PubMed  Google Scholar 

  • Figueroa JD, Malats N, Garcia-Closas M, Real FX, Silverman D, Kogevinas M, Chanock S, Welch R, Dosemeci M, Lan Q, Tardon A, Serra C, Carrato A, Garcia-Closas R, Castano-Vinyals G, Rothman N (2008) Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis 29:1955–1962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • First M, Spitzer R, Gibbon M & Williams J (1995) Structured clinical interview for DSM-IV Axis I disorders—patient edition (SCID - I/P, Version 2.0), New York: Biometrics Research Department, New York State Psychiatric Institute

  • Ford MM, Yoneyama N, Strong MN, Fretwell A, Tanchuck M, Finn DA (2008) Inhibition of 5alpha-reduced steroid biosynthesis impedes acquisition of ethanol drinking in male C57BL/6 J mice. Alcohol Clin Exp Res 32:1408–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilman JM, Ramchandani VA, Crouss T, Hommer DW (2012) Subjective and neural responses to intravenous alcohol in young adults with light and heavy drinking patterns. Neuropsychopharmacology 37(2):467–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP (2004) The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991-1992 and 2001-2002. Drug Alcohol Depend 74:223–234

    Article  PubMed  Google Scholar 

  • Hendler RA, Ramchandani VA, Gilman J, Hommer DW (2011) Stimulant and sedative effects of alcohol. Curr Top Behav Neurosci

  • Holdstock L, Penland SN, Morrow AL, de Wit H (2006) Moderate doses of ethanol fail to increase plasma levels of neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one-like immunoreactivity in healthy men and women. Psychopharmacology 186:442–450

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Oroszi G, Chun J, Smith TL, Goldman D, Schuckit MA (2005) An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 29:8–16

    Article  CAS  PubMed  Google Scholar 

  • Joslyn G, Ravindranathan A, Brush G, Schuckit M, White RL (2010) Human variation in alcohol response is influenced by variation in neuronal signaling genes. Alcohol Clin Exp Res 34:800–812

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Zhang H, Kim HY (2000) Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal Biochem 277:187–195

    Article  CAS  PubMed  Google Scholar 

  • King AC, Houle T, de Wit H, Holdstock L, Schuster A (2002) Biphasic alcohol response differs in heavy versus light drinkers. Alcohol Clin Exp Res 26(6):827–835

    Article  CAS  PubMed  Google Scholar 

  • King AC, de Wit H, McNamara PJ, Cao D (2011) Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry 68(4):389–399

    Article  PubMed  Google Scholar 

  • King AC, McNamara PJ, Hasin DS, Cao D (2013) Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. doi:10.1016/j.biopsych.2013.08.001

    Google Scholar 

  • Lin HK, Jez JM, Schlegel BP, Peehl DM, Pachter JA, Penning TM (1997) Expression and characterization of recombinant type 2 3 alpha-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution”. Mol Endocrinol 11(13):1971–1984

    CAS  PubMed  Google Scholar 

  • Luu-The V, Zhang Y, Poirier D, Labrie F (1995) Characteristics of human types 1, 2 and 3 17 beta-hydroxysteroid dehydrogenase activities: oxidation/reduction and inhibition. J Steroid Biochem Mol Biol 55(5–6):581–587

    Article  CAS  PubMed  Google Scholar 

  • Martin-Garcia E, Darbra S, Pallares M (2007) Intrahippocampal allopregnanolone decreases voluntary chronic alcohol consumption in non-selected rats. Prog Neuro-Psychopharmacol Biol Psychiatry 31:823–831

    Article  CAS  Google Scholar 

  • Martin CS, Earleywine M, Musty RE, Perrine MW, Swift RM (1993) Development and validation of the Biphasic Alcohol Effects Scale. Alcohol Clin Exp Res 17:140–146

    Article  CAS  PubMed  Google Scholar 

  • Milivojevic V, Covault J (2013) Alcohol exposure during late adolescence increases drinking in adult Wistar rats, an effect that is not reduced by finasteride. Alcohol Alcohol 48:28–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milivojevic V, Kranzler HR, Gelernter J, Burian L, Covault J (2011) Variation in genes encoding the neuroactive steroid synthetic enzymes 5alpha-reductase type 1 and 3alpha-reductase type 2 is associated with alcohol dependence. Alcohol Clin Exp Res 35:946–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow AL, Janis GC, VanDoren MJ, Matthews DB, Samson HH, Janak PH, Grant KA (1999) Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res 23:1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Morrow AL, VanDoren MJ, Penland SN, Matthews DB (2001) The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence. Brain Res Brain Res Rev 37:98–109

    Article  CAS  PubMed  Google Scholar 

  • Newlin DB, Thompson JB (1990) Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull 108:383–402

    Article  CAS  PubMed  Google Scholar 

  • Nyberg S, Andersson A, Zingmark E, Wahlstrom G, Backstrom T, Sundstrom-Poromaa I (2005) The effect of a low dose of alcohol on allopregnanolone serum concentrations across the menstrual cycle in women with severe premenstrual syndrome and controls. Psychoneuroendocrinology 30:892–901

    Article  CAS  PubMed  Google Scholar 

  • Ostlund RE Jr, Hsu FF, Bosner MS, Stenson WF, Hachey DL (1996) Quantification of cholesterol tracers by gas chromatography—negative ion chemical ionization mass spectrometry. J Mass Spectrom 31:1291–1296

    Article  PubMed  Google Scholar 

  • Paris JJ, Frye CA (2009) Alcohol dose-dependently enhances 3a-androstanediol formation in frontal cortex of male rats concomitant with aggression. Open Psychopharmacol J 2:1–10

    CAS  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Pierucci-Lagha A, Covault J, Feinn R, Khisti RT, Morrow AL, Marx CE, Shampine LJ, Kranzler HR (2006) Subjective effects and changes in steroid hormone concentrations in humans following acute consumption of alcohol. Psychopharmacology 186:451–461

    Article  CAS  PubMed  Google Scholar 

  • Ray LA, Hutchison KE (2004) A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res 28:1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Ray LA, MacKillop J, Leventhal A, Hutchison KE (2009) Catching the alcohol buzz: an examination of the latent factor structure of subjective intoxication. Alcohol Clin Exp Res 33:2154–2161

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddy DS (2008) Mass spectrometric assay and physiological-pharmacological activity of androgenic neurosteroids. Neurochem Int 52:541–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanna E, Talani G, Busonero F, Pisu MG, Purdy RH, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci 24:6521–6530

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA (1984) Subjective responses to alcohol in sons of alcoholics and control subjects. Arch Gen Psychiatry 41:879–884

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA (1994) Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry 151:184–189

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 53(3):202–210

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA, Gold E, Risch C (1987a) Plasma cortisol levels following ethanol in sons of alcoholics and controls. Arch Gen Psychiatry 44:942–945

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA, Gold E, Risch C (1987b) Serum prolactin levels in sons of alcoholics and control subjects. Am J Psychiatry 144:854–859

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Risch SC, Gold EO (1988) Alcohol consumption, ACTH level, and family history of alcoholism. Am J Psychiatry 145:1391–1395

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL, Kalmijn J, Tsuang J, Hesselbrock V, Bucholz K (2000) Response to alcohol in daughters of alcoholics: a pilot study and a comparison with sons of alcoholics. Alcohol Alcohol 35:242–248

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL, Anderson KG, Brown SA (2004) Testing the level of response to alcohol: social information processing model of alcoholism risk—a 20-year prospective study. Alcohol Clin Exp Res 28(12):1881–1889

    Article  PubMed  Google Scholar 

  • Sobell LC and Sobell MB(1992) Timeline follow-back: a technique for assessing self-reported alcohol consumption. Measuring alcohol consumption: psychosocial and biochemical methods. R. Litten and J. Allen, Humana Press: 41-42

  • Torres JM, Ortega E (2003) Alcohol intoxication increases allopregnanolone levels in female adolescent humans. Neuropsychopharmacology 28:1207–1209

    CAS  PubMed  Google Scholar 

  • Torres JM, Ortega E (2004) Alcohol intoxication increases allopregnanolone levels in male adolescent humans. Psychopharmacology 172:352–355

    Article  CAS  PubMed  Google Scholar 

  • Vallee M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem 287:153–166

    Article  CAS  PubMed  Google Scholar 

  • VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL (2000) Neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 20:1982–1989

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants R01 AA015606 (to JC), K24 AA13736 (to HRK), P60 AA03510 (University of Connecticut Alcohol Research Center), and M01 RR06192 (University of Connecticut General Clinical Research Center). The authors thank Timothy Pond, Linda Burian, Kaitlin Miller, and Pamela Fall for their expert technical assistance in the conduct of this study.

Conflict of interest

VM, RF, and JC have no disclosures to make. HK has been a consultant or advisory board member for the following pharmaceutical companies: Alkermes, Lilly, Lundbeck, Pfizer, and Roche. He is also a member of the American Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which is supported by Lilly, Lundbeck, AbbVie, Ethypharm, and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Covault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milivojevic, V., Feinn, R., Kranzler, H.R. et al. Variation in AKR1C3, which encodes the neuroactive steroid synthetic enzyme 3α-HSD type 2 (17β-HSD type 5), moderates the subjective effects of alcohol. Psychopharmacology 231, 3597–3608 (2014). https://doi.org/10.1007/s00213-014-3614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3614-2

Keywords

Navigation