Skip to main content
Log in

Behavioral assessment of acute inhibition of system xc - in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Gaps in our understanding of glutamatergic signaling may be key obstacles in accurately modeling complex CNS diseases. System xc - is an example of a poorly understood component of glutamate homeostasis that has the potential to contribute to CNS diseases.

Objectives

This study aims to determine whether system xc - contributes to behaviors used to model features of CNS disease states.

Methods

In situ hybridization was used to map mRNA expression of xCT throughout the brain. Microdialysis in the prefrontal cortex was used to sample extracellular glutamate levels; HPLC was used to measure extracellular glutamate and tissue glutathione concentrations. Acute administration of sulfasalazine (8–16 mg/kg, IP) was used to decrease system xc - activity. Behavior was measured using attentional set shifting, elevated plus maze, open-field maze, Porsolt swim test, and social interaction paradigm.

Results

The expression of xCT mRNA was detected throughout the brain, with high expression in several structures including the basolateral amygdala and prefrontal cortex. Doses of sulfasalazine that produced a reduction in extracellular glutamate levels were identified and subsequently used in the behavioral experiments. Sulfasalazine impaired performance in attentional set shifting and reduced the amount of time spent in an open arm of an elevated plus maze and the center of an open-field maze without altering behavior in a Porsolt swim test, total distance moved in an open-field maze, or social interaction.

Conclusions

The widespread distribution of system xc - and involvement in a growing list of behaviors suggests that this form of nonvesicular glutamate release is a key component of excitatory signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amen SL, Piacentine LB, Ahmad ME, Li SJ, Mantsch JR, Risinger RC, Baker DA (2011) Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology 36:871–878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Azadkhan AK, Truelove SC, Aronson JK (1982) The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br J Clin Pharmacol 13:523–528

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW (2003) Neuroadaptations in cystine–glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I (2008) Contribution of cystine–glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology 33:1760–1772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baldwin HA, Johnston AL, File SE (1989) Antagonistic effects of caffeine and yohimbine in animal tests of anxiety. Eur J Pharmacol 159:211–215

    Article  PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376

    PubMed  CAS  Google Scholar 

  • Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461

    PubMed  CAS  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    Article  PubMed  CAS  Google Scholar 

  • Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI (2008) N-acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 64:361–368

    Article  PubMed  CAS  Google Scholar 

  • Bernabucci M, Notartomaso S, Zappulla C, Fazio F, Cannella M, Motolese M, Battaglia G, Bruno V, Gradini R, Nicoletti F (2012) N-Acetyl-cysteine causes analgesia by reinforcing the endogenous activation of type-2 metabotropic glutamate receptors. Mol Pain 8:77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bridges CC, Kekuda R, Wang H, Prasad PD, Mehta P, Huang W, Smith SB, Ganapathy V (2001) Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:47–54

    PubMed  CAS  Google Scholar 

  • Bridges R, Lutgen V, Lobner D, Baker DA (2012a) Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (system xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bridges RJ, Natale NR, Patel SA (2012b) System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Britton DR, Britton KT (1981) A sensitive open field measure of anxiolytic drug activity. Pharmacol, Biochem Behav 15:577–582

    Article  CAS  Google Scholar 

  • Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17:1269–1274

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem 14:325–328

    Article  PubMed Central  PubMed  Google Scholar 

  • Carmeli C, Knyazeva MG, Cuenod M, Do KQ (2012) Glutathione precursor N-acetyl-cysteine modulates EEG synchronization in schizophrenia patients: a double-blind, randomized, placebo-controlled trial. PLoS One 7:e29341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 564:397–410

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chung WJ, Sontheimer H (2009) Sulfasalazine inhibits the growth of primary brain tumors independent of nuclear factor-kappaB. J Neurochem 110:182–193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costa-Campos L, Herrmann AP, Pilz LK, Michels M, Noetzold G, Elisabetsky E (2013) Interactive effects of N-acetylcysteine and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 44:125–130

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • File SE (1995) Animal models of different anxiety states. Adv Biochem Psychopharmacol 48:93–113

    PubMed  CAS  Google Scholar 

  • File SE, Hyde JR (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:19–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • File SE, Lister RG (1984) Do the reductions in social interaction produced by picrotoxin and pentylenetetrazole indicate anxiogenic actions? Neuropharmacology 23:793–796

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    Article  PubMed  CAS  Google Scholar 

  • Franks KM, Bartol TM Jr, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuchs E, Fliugge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8:323–333

    PubMed Central  PubMed  Google Scholar 

  • Gilmour G, Arguello A, Bari A, Brown VJ, Carter C, Floresco SB, Jentsch DJ, Tait DS, Young JW, Robbins TW (2013) Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research. Neurosci Biobehav Rev 37:2125–2140

    Article  PubMed  Google Scholar 

  • Gout PW, Buckley AR, Simms CR, Bruchovsky N (2001) Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 15:1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Green MR, Barnes B, McCormick CM (2013) Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male Long-Evans rats. Dev Psychobiol 55:849–859

    Article  PubMed  Google Scholar 

  • Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB (1988) Glutamate transmission and toxicity in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 12:421–430

    Article  PubMed  CAS  Google Scholar 

  • Grivas V, Markou A, Pitsikas N (2013) The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety. Eur J Pharmacol 715:105–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Han KS, Woo J, Park H, Yoon BJ, Choi S, Lee CJ (2013) Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 6:4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirai K, Yoshioka H, Kihara M, Hasegawa K, Sakamoto T, Sawada T, Fushiki S (1999) Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. Brain Res Dev Brain Res 114:63–67

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology (Berl) 219:607–620

    Article  CAS  Google Scholar 

  • Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler B, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. ProcNatlAcadSci (USA) 96:8733–8738

    Article  CAS  Google Scholar 

  • Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K, Bear MF, Umbricht D, Hajos M, Potter WZ, Lee CM (2011) Translating glutamate: from pathophysiology to treatment. Sci Transl Med 3:102mr2

    Article  PubMed Central  PubMed  Google Scholar 

  • Joffe JM, Rawson RA, Mulick JA (1973) Control of their environment reduces emotionality in rats. Science 180:1383–1384

    Article  PubMed  CAS  Google Scholar 

  • Johnston AL, Baldwin HA, File SE (1988) Measures of anxiety and stress in the rat following chronic treatment with yohimbine. J Psychopharmacol 2:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA (2008) Blunted cystine-glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience 155:530–537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kihara M, Yoshioka H, Hirai K, Hasegawa K, Kizaki Z, Sawada T (2002) Stimulation of N-methyl-D-aspartate (NMDA) receptors inhibits neuronal migration in embryonic cerebral cortex: a tissue culture study. Brain Res Dev Brain Res 138:195–198

    Article  PubMed  CAS  Google Scholar 

  • Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S, Markou A, Kalivas PW (2009) The role of cystine–glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry 65:841–845

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koss WA, Gehlert DR, Shekhar A (2004) Different effects of subchronic doses of 17-beta estradiol in two ethologically based models of anxiety utilizing female rats. Horm Behav 46:158–164

    Article  PubMed  CAS  Google Scholar 

  • Kupchik YM, Moussawi K, Tang XC, Wang X, Kalivas BC, Kolokithas R, Ogburn KB, Kalivas PW (2012) The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry 71:978–986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leblanc-Duchin D, Taukulis HK (2004) Behavioral reactivity to a noradrenergic challenge after chronic oral methylphenidate (ritalin) in rats. Pharmacol, Biochem Behav 79:641–649

    Article  CAS  Google Scholar 

  • Li Y, Tan Z, Li Z, Sun Z, Duan S, Li W (2012) Impaired long-term potentiation and long-term memory deficits in xCT-deficient sut mice. Biosci Rep 32:315–321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602

    Article  PubMed  CAS  Google Scholar 

  • Marino MJ, Wittmann M, Bradley SR, Hubert GW, Smith Y, Conn PJ (2001) Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 21:7001–7012

    PubMed  CAS  Google Scholar 

  • McGonigle P (2013) Animal models of CNS disorders. Biochem Pharmacol

  • Melendez RI, Vuthiganon J, Kalivas PW (2005) Regulation of extracellular glutamate in the prefrontal cortex: focus on the cystine glutamate exchanger and group I metabotropic glutamate receptors. J Pharmacol Exp Ther 314:139–147

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morley KC, McGregor IS (2000) (+/−)-3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') increases social interaction in rats. Eur J Pharmacol 408:41–49

    Article  PubMed  CAS  Google Scholar 

  • Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, Kalivas PW (2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moussawi K, Zhou W, Shen H, Reichel CM, See RE, Carr DB, Kalivas PW (2011) Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci U S A 108:385–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray GK, Cheng F, Clark L, Barnett JH, Blackwell AD, Fletcher PC, Robbins TW, Bullmore ET, Jones PB (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34:848–855

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–270

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Pettit DL, Augustine GJ (2000) Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons. J Neurophysiol 84:28–38

    PubMed  CAS  Google Scholar 

  • Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152:3578–3585

    PubMed  CAS  Google Scholar 

  • Pirttimaki TM, Hall SD, Parri HR (2011) Sustained neuronal activity generated by glial plasticity. J Neurosci 31:7637–7647

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Rada P, Moreno SA, Tucci S, Gonzalez LE, Harrison T, Chau DT, Hoebel BG, Hernandez L (2003) Glutamate release in the nucleus accumbens is involved in behavioral depression during the PORSOLT swim test. Neuroscience 119:557–565

    Article  PubMed  CAS  Google Scholar 

  • Razafsha M, Behforuzi H, Harati H, Wafai RA, Khaku A, Mondello S, Gold MS, Kobeissy FH (2013) An updated overview of animal models in neuropsychiatry. Neuroscience 240:204–218

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Sabate M, Rodriguez-Sabate C, Morales I (2013) The role of non-synaptic extracellular glutamate. Brain Res Bull 93:17–26

    Article  PubMed  CAS  Google Scholar 

  • Rusakov DA, Savtchenko LP, Zheng K, Henley JM (2011) Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci 34:359–369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 59:157–167

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458

    Article  PubMed  CAS  Google Scholar 

  • Simonian SX, Herbison AE (2001) Differing, spatially restricted roles of ionotropic glutamate receptors in regulating the migration of gnrh neurons during embryogenesis. J Neurosci 21:934–943

    PubMed  CAS  Google Scholar 

  • Smaga I, Pomierny B, Krzyzanowska W, Pomierny-Chamiolo L, Miszkiel J, Niedzielska E, Ogorka A, Filip M (2012) N-Acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats. Prog Neuropsychopharmacol Biol Psychiatry 39:280–287

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H, Bridges RJ (2012) Sulfasalazine for brain cancer fits. Expert Opin Invest Drugs 21:575–578

    Article  CAS  Google Scholar 

  • Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan XJ, Dai YB, Wu WF, Warner M, Gustafsson JA (2012) Anxiety in liver X receptor beta knockout female mice with loss of glutamic acid decarboxylase in ventromedial prefrontal cortex. Proc Natl Acad Sci U S A 109:7493–7498

    Article  PubMed Central  PubMed  Google Scholar 

  • Tapia R, Medina-Ceja L, Pena F (1999) On the relationship between extracellular glutamate, hyperexcitation and neurodegeneration, in vivo. Neurochem Int 34:23–31

    Article  PubMed  CAS  Google Scholar 

  • Wolak M, Siwek A, Szewczyk B, Poleszak E, Pilc A, Popik P, Nowak G (2013) Involvement of NMDA and AMPA receptors in the antidepressant-like activity of antidepressant drugs in the forced swim test. Pharmacol Rep : PR 65:991–997

    Article  PubMed  CAS  Google Scholar 

  • Wu YW, Grebenyuk S, McHugh TJ, Rusakov DA, Semyanov A (2012) Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Rep 1:495–505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants DA017328 (DAB), DA017328 (DAB), and DK074734 (SC).

Conflict of interest

David A. Baker owns shares in Promentis Pharmaceuticals, a company developing novel antipsychotic agents. Promentis did not sponsor or otherwise support the experiments contained in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Baker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutgen, V., Resch, J., Qualmann, K. et al. Behavioral assessment of acute inhibition of system xc - in rats. Psychopharmacology 231, 4637–4647 (2014). https://doi.org/10.1007/s00213-014-3612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3612-4

Keywords

Navigation