Skip to main content
Log in

Role of CA2+/calmodulin on ethanol neurobehavioral effects

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The cAMP-dependent protein kinase A (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol-induced behaviors. Different studies have demonstrated intracellular calcium (Ca2+)-dependent activation of the PKA cascade after ethanol administration. Thus, the cAMP cascade mediator Ca2+-dependent calmodulin (CaM) has been strongly implicated in the central effects of ethanol.

Objectives

In this study, we assessed the role of the CaM inhibitor W7 on ethanol-induced stimulation, ethanol intake, and ethanol-induced activation of PKA.

Methods

Swiss mice were pretreated with W7 (0–10 mg/kg) 30 min before ethanol (0–3.75 g/kg) administration. Immediately, animals were placed during 20 min in an open-field chamber. Ethanol (10 %, v/v) intake in 2 h was assessed using a limited access paradigm. Experiments with caffeine (0–15 mg/kg), cocaine (0–4 mg/kg), and saccharine (0.1 %, w/v) were designed to compare their results to those obtained with ethanol. Western blot was assayed 45 min after ethanol administration.

Results

Results showed that pretreatment with W7, reduced selectively in a dose-dependent fashion ethanol-induced locomotor stimulation and ethanol intake. The ethanol-induced activation of PKA was also prevented by W7 administration.

Conclusions

These results demonstrate that CaM inhibition resulted in a selective reduction of ethanol-stimulating effects and ethanol intake. The PKA activation induced by ethanol was blocked after the CaM blockade with W7. These results provide further evidence of the key role of cellular Ca2+-dependent pathways on the central effects of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aragon CM, Amit Z (1993) Differences in ethanol-induced behaviors in normal and acatalasemic mice:systematic examination using a biobehavioral approach. Pharmacol Biochem Behav 44:547–554.

  • Asyyed A, Storm D, Diamond I (2006) Ethanol activates cAMP response element-mediated gene expression in select regions of the mouse brain. Brain Res 1106:63–71

    Article  CAS  PubMed  Google Scholar 

  • Baliño P, Pastor R, Aragon CMG (2010) Participation of L-type calcium channels in ethanol-induced behavioral stimulation and motor incoordination: effects of diltiazem and verapamil. Behav Brain Res 209:196–204

    Article  PubMed  Google Scholar 

  • Baliño P, Monferrer L, Pastor R, Aragon CMG (2012) Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol 234:446–453

    Article  PubMed  Google Scholar 

  • Baliño P, Ledesma JC, Aragon CMG (2013) In vivo study of ethanol activated brain pka: manipulations of Ca2+ distribution and flux. Alcohol Clin Exp Res. doi:10.1111/acer.12289

    Google Scholar 

  • Barron E, Marshall RJ, Martorana M, Winslow E (1986) Comparative antiarrhythmic and electrophysiological effects of drugs known to inhibit calmodulin (TFP, W7 and bepridil). Br J Pharmacol 89:603–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belia S, Mannucci R, Lisciarelli M, Cacchio M, Fano G (1995) Double effect of ethanol on intracellular Ca2+ levels in undifferentiated PC12 cells. Cell Signal 7:389–395

    Article  CAS  PubMed  Google Scholar 

  • Boehm SL II, Schafer GL, Phillips TJ, Browman KE, Crabbe JC (2000) Sensitivity to ethanol-induced motor incoordination in 5-HT(1B) receptor null mutant mice is task-dependent: implications for behavioral assessment of genetically altered mice. Behav Neurosci 114:401–409

    Article  CAS  PubMed  Google Scholar 

  • Burns KD, Homma T, Harris RC (1991) Regulation of Na(+)-H + exchange by ATP depletion and calmodulin antagonism in renal epithelial cells. Am J Physiol 261:F607–F616

    CAS  PubMed  Google Scholar 

  • Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J (1994) Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 269:12190–12195

    CAS  PubMed  Google Scholar 

  • Chan J, Greenberg DA (1991) Intracellular calcium in NCB-20 cells: elevation by depolarization and ethanol but not by glutamate. Brain Res 539:328–331

    Article  CAS  PubMed  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  CAS  PubMed  Google Scholar 

  • Cofán M, Nicolás JM, Fernández-Solá J, Robert J, Tobías E, Sacanella E, Esturch R, Urbano-Márquez A (2000) Acute EtOH treatment decreases intracellular calcium-ion transients in mouse single skeletal muscle fibres in vitro. Alcohol Alcohol 35:134–138

    Article  PubMed  Google Scholar 

  • Conti AC, Maas JW, Moulder KL, Jiang X, Dave BA, Mennerick S, Muglia LJ (2009) Adenylylcyclases 1 and 8 initiate a presynaptic homeostatic response to ethanol treatment. PLoS ONE 4:e5697

    Article  PubMed Central  PubMed  Google Scholar 

  • Correa M, Sanchis-Segura C, Aragon CM (2001) Influence of brain catalase on ethanol-induced loss of righting reflex in mice. Drug Alcohol Depend 65:9–15

  • Correa M, Sanchis-Segura C, Pastor R, Aragon CM (2004) Ethanol intake and motor sensitization: the role of brain catalase activity in mice with different genotypes. Physiol Behav 82(2-3):231–240

  • Daniell LC, Harris RA (1989) Ethanol and inositol 1,4,5-trisphosphate release calcium from separate stores of brain microsomes. J Pharmacol Exp Ther 250:875–881

    CAS  PubMed  Google Scholar 

  • Davidson M, Wilce P, Shanley B (1988) Ethanol increases synaptosomal free calcium concentration. Neurosci Lett 89:165–169

    Article  CAS  PubMed  Google Scholar 

  • De Beun R, Schneider R, Klein A, Lohmann A, De Vry J (1996) Effects of nimodipine and other calcium channel antagonists in alcohol-preferring AA rats. Alcohol 13:263–271

    Article  PubMed  Google Scholar 

  • Diamond I, Gordon AS (1997) Cellular and molecular neuroscience of alcoholism. Physiol Rev 77:1–20

    CAS  PubMed  Google Scholar 

  • Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, Lewczuk P, Fernandes C, Desrivieres S, Dawirs RR, Moll GH, Kornhuber J, Frank J, Hoffmann P, Soyka M, Kiefer F, GESGA Consortium, Schumann G, Peter Giese K, Müller CP (2013) αCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Font L, Miquel M, Aragon CMG (2001) Behavioral consequences of the hypotaurine–EtOH interaction. Pharmacol Biochem Behav 70:333–339

    Article  CAS  PubMed  Google Scholar 

  • Frampton JE, Orchard CH (1992) The effect of a calmodulin inhibitor on intracellular [Ca2+] and contraction in isolated rat ventricular myocytes. J Physiol 453:385–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freund RK, Palmer MR (1997) Beta adrenergic sensitization of gamma-aminobutyric acid receptors to ethanol involves a cyclic AMP/protein kinase A second-messenger mechanism. J Pharmacol Exp Ther 280:1192–2200

    CAS  PubMed  Google Scholar 

  • González A, Pariente JA, Salido GM (2007) Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 1178:28–37

    Article  PubMed  Google Scholar 

  • Grab DJ, Carlin RK, Siekevitz P (1980) The presence and functions of calmodulin in the postsynaptic density. Ann N Y Acad Sci 356:55–72

    Article  CAS  PubMed  Google Scholar 

  • Hayes DM, Fee JR, McCown TJ, Knapp DJ, Breese GR, Cubero I, Carvajal F, Lerma-Cabrera JM, Navarro M, Thiele TE (2012) Neuropeptide Y signaling modulates the expression of ethanol-induced behavioral sensitization in mice. Addict Biol 17:338–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman RM, Sykes BD (2009) Structure of the inhibitor W7 bound to the regulatory domain of cardiac troponin C. Biochemistry 48:5541–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hook SS, Means AR (2001) Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505

    Article  CAS  PubMed  Google Scholar 

  • Ito H (1986) Enhancement of phagocytosis by a calmodulin antagonist (W-7) in mice. Jpn J Pharmacol 41:131–134

    Article  CAS  PubMed  Google Scholar 

  • Jackson KJ, Sanjakdar SS, Chen X, Damaj MI (2012) Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS One 7:e51154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelm MK, Criswell HE, Breese GR (2007) Calcium release from presynaptic internal stores is required for ethanol to increase spontaneous gamma-aminobutyric acid release onto cerebellum Purkinje neurons. J Pharmacol Exp Ther 323:356–364

    Article  CAS  PubMed  Google Scholar 

  • Klee CB, Haiech J (1980) Concerted role of calmodulin and calcineurin in calcium regulation. Ann N Y Acad Sci 356:43–54

    Article  CAS  PubMed  Google Scholar 

  • Lee AM, Messing RO (2008) Protein kinases and addiction. Ann N Y Acad Sci 1141:22–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leslie SW, Brown LM, Dildy JE, Sims JS (1990) Ethanol and neuronal calcium channels. Alcohol 7:233–236

    Article  CAS  PubMed  Google Scholar 

  • Lu KP, Means AR (1993) Regulation of the cell cycle by calcium and calmodulin. Endocr Rev 14:40–58

    Article  CAS  PubMed  Google Scholar 

  • Maas JW Jr, Vogt SK, Chan GC, Pineda VV, Storm DR, Muglia LJ (2005) Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity. J Neurosci 25:4118–4126

    Article  CAS  PubMed  Google Scholar 

  • Marcantoni A, Carabelli V, Vandael DH, Comunanza V, Carbone E (2009) PDE type-4 inhibition increases L-type Ca(2+) currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells. Pflugers Arch 457:1093–1110

    Article  CAS  PubMed  Google Scholar 

  • McLearn GE, Rodgers DA (1959) Differences in alcohol preference among inbred strains of mice. Q J Stud Alcohol 20:691–695

    Google Scholar 

  • Mironov SL, Hermann A (1996) Ethanol actions on the mechanisms of Ca2+ mobilization in rat hippocampal cells are mediated by protein kinase C. Brain Res 714:27–37

    Article  CAS  PubMed  Google Scholar 

  • Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, Ikura M (1998) Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J Mol Biol 276:165–176

    Article  CAS  PubMed  Google Scholar 

  • Ostroveanu A, Van der Zee EA, Dolga AM, Luiten PG, Eisel UL, Nijholt IM (2007) A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory. Brain Res 1145:97–107

    Article  CAS  PubMed  Google Scholar 

  • Pandey SC, Zhang H, Roy A, Xu T (2005) Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 115:2762–2773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pastor R, Sanchis-Segura C, Aragon CMG (2002) EtOH-stimulated behaviour in mice is modulated by brain catalase activity and H2O2 rate of production. Psychopharmacology 165:51–59

    Article  CAS  PubMed  Google Scholar 

  • Pohorecky LA (1977) Brain catecholamines and EtOH: involvement in physical dependence and withdrawal. Adv Exp Med Biol 85:495–513

    Article  Google Scholar 

  • Qu YJ, Bondarenko VE, Xie C, Wang S, Awayda MS, Strauss HC, Morales MJ (2007) W-7 modulates Kv4.3: pore block and Ca2 + -calmodulin inhibition. Am J Physiol Heart Circ Physiol 292:H2364–H2377

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of EtOH drinking to intoxication in C57BL/6 J mice. Physiol Behav 84:53–63

    Article  CAS  PubMed  Google Scholar 

  • Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, Wee S, Koob G, Turecki G, Neve R, Thomas M, Nestler EJ (2013) Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 33:4295–4307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salazar M, Pariente JA, Salido GM, González A (2008) Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochem Int 52:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Schaefer ML, Wong ST, Wozniak DF, Muglia LM, Liauw JA, Zhuo M, Nardi A, Hartman RE, Vogt SK, Luedke CE, Storm DR, Muglia LJ (2000) Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J Neurosci 20:4809–4820

    CAS  PubMed  Google Scholar 

  • Seto-Ohshima A, Kitajima S, Sano M, Kato K, Mizutani A (1983) Immunohistochemical localization of calmodulin in mouse brain. Histochemistry 79:251–257

    Article  CAS  PubMed  Google Scholar 

  • Sobue K, Morimoto K, Kanda K, Kakiuchi S (1982) Ca2 + -dependent binding of [3H]calmodulin to the microsomal fraction of brain. J Biochem 91:1313–1320

    CAS  PubMed  Google Scholar 

  • Solà C, Tusell JM, Serratosa J (1999) Comparative study of the distribution of calmodulin kinase II and calcineurin in the mouse brain. J Neurosci Res 57:651–662

    Article  PubMed  Google Scholar 

  • Tarragon E, Baliño P, Aragon CMG (2012) Dantrolene blockade of ryanodine receptor impairs ethanol-induced behavioral stimulation, ethanol intake and loss of righting reflex. Behav Brain Res 233:554–562

    Article  CAS  PubMed  Google Scholar 

  • Thiele TE, Willis B, Stadler J, Reynolds JG, Bernstein IL, McKnight GS (2000) High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J Neurosci 20:RC75

    CAS  PubMed  Google Scholar 

  • Tolliver BK, Ho LB, Fox LM, Berger SP (1999) Necessary role for ventral tegmental area adenylate cyclase and protein kinase A in induction of behavioral sensitization to intraventral tegmental area amphetamine. J Pharmacol Exp Ther 289:38–47

    CAS  PubMed  Google Scholar 

  • Villacres EC, Wong ST, Chavkin C, Storm DR (1998) Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J Neurosci 18:3186–3194

    CAS  PubMed  Google Scholar 

  • Wand G, Levine M, Zweifel L, Schwindinger Q, Abel T (2001) The cAMP-protein kinase A signal transduction pathway modulates EtOH consumption and sedative effects of EtOH. J Neurosci 21:5297–5303

    CAS  PubMed  Google Scholar 

  • Wang H, Pineda VV, Chan GC, Wong ST, Muglia LJ, Storm DR (2003) Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation. J Neurosci 23:9710–9718

    CAS  PubMed  Google Scholar 

  • Wang Y, Cui H, Wang W, Zhao B, Lai J (2012) The region-specific activation of Ca2+/calmodulin dependent protein kinase II and extracellular signal-regulated kinases in hippocampus following chronic alcohol exposure. Brain Res Bull 89:191–196

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29:203–210

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1975) Maximization of ethanol intake in the rat. Adv Exp Med Biol 59:279–294

    Article  CAS  PubMed  Google Scholar 

  • Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, Muglia LJ, Storm DR (1999) Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23:787–798

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980) Immunocytochemical localization of calmodulin in regions of rodent brain. Ann N Y Acad Sci 356:75–82

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZM, Li LJ, Yu SZ, Lu ZN, Li CY, Zheng JQ (2005) Effects of extracellular Ca(2+) influx and intracellular Ca(2+) release on ethanol-induced cytoplasmic Ca(2+) overload in cultured superior cervical ganglion neurons. Neurosci Lett 390:98–103

    Article  CAS  PubMed  Google Scholar 

  • Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Ministerio de Ciéncia e Innovación (PSI2011-28934/PSIC). Baliño P was supported by a fellowship from the CICYT (BES-2009-024438). Ledesma JC was supported by a fellowship from Universitat Jaume I (PREDOC/2007/07), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. G. Aragon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliño, P., Ledesma, J.C. & Aragon, C.M.G. Role of CA2+/calmodulin on ethanol neurobehavioral effects. Psychopharmacology 231, 4611–4621 (2014). https://doi.org/10.1007/s00213-014-3610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3610-6

Keywords

Navigation