Skip to main content

Advertisement

Log in

The activation of the Akt/PKB signalling pathway in the brains of clozapine-exposed rats is linked to hyperinsulinemia and not a direct drug effect

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The second generation antipsychotic drug clozapine is a much more effective therapy for schizophrenia than first generation compounds, but the reasons for this are poorly understood. We have previously shown that one distinguishing feature of clozapine is its ability to raise glucagon levels in animal models and thus causes prolonged hyperinsulinemia without inducing hypoglycaemia. Previous studies have provided evidence that defects in Akt/PKB and GSK3 signalling can contribute to development of psychiatric diseases. Clozapine is known to activate Akt/PKB in the brain, and some studies have indicated that this is due to a direct effect of the drug on the neurons. However, we provide strong evidence that elevated insulin levels induced by clozapine are in fact the real cause of the drug’s effects on Akt/PKB and GSK3 in the brain. This suggests that the elevated levels of insulin induced by clozapine may contribute to this drug’s therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo M, Raizada MK, LeRoith D (1989) Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 3:71–100

    Article  CAS  PubMed  Google Scholar 

  • Alimohamad H, Rajakumar N, Seah YH, Rushlow W (2005a) Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 57:533–542

    Article  CAS  PubMed  Google Scholar 

  • Alimohamad H, Sutton L, Mouyal J, Rajakumar N, Rushlow WJ (2005b) The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J Neurochem 95:513–525

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Owen JB, Erickson MA (2012) Insulin in the brain: there and back again. Pharmacol Ther 136:82–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basta-Kaim A, Budziszewska B, Jaworska-Feil L, Tetich M, Kubera M, Leśkiewicz M, Otczyk M, Lasoń W (2006) Antipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells—an involvement of protein kinases. Neuropsychopharmacology 31:853–865

    Article  CAS  PubMed  Google Scholar 

  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic reveiw. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  • Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresses S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interations with apolipoprotein E genotype. Psychoneuroendocrinology 28:809–822

    Article  CAS  PubMed  Google Scholar 

  • Doble RW, Woodgett JR (2003) GSK-3: tricks of the trade for a multitasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3b signaling in schizophrenia. Nat Genet 36:131–137

    Article  CAS  PubMed  Google Scholar 

  • Gerozissis K, Kyriaki G (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25

    Article  PubMed  Google Scholar 

  • Girault EM, Alkemade A, Foppen E, Ackermans MT, Fliers E, Kalsbeek A (2012) Acute peripheral but not central administration of olanzapine induces hyperglycemia associated with hepatic and extra-hepatic insulin resistance. PLoS One 7:e43244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for litium mimetic drugs. Neuropsychopharmacology 30:1223–1237

    CAS  PubMed  Google Scholar 

  • Havrankova K, Schmechel D, Roth J, Brownstein M (1978) Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75:5737–5741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillebrand JJ, de Wied D, Adan RA (2002) Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides 23:2283–2306

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Lee VMY (1997) Insulin and insulin-like growth factor-1 regulate Tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Roh MS (2006) Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets 7:1421–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalkman HO (2006) The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 110:117–134

    Article  CAS  PubMed  Google Scholar 

  • Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS (2004) The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560:115–119

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, VanderSpek SC, Brownlee BA, Nobrega JN (2003) Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition: a suggested solution based on in vivo occupancy. J Pharmacol Exp Ther 305:625–631

    Article  CAS  PubMed  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2002) GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol 12:13–25

    Article  CAS  PubMed  Google Scholar 

  • Li X, Rosborough KM, Friedman AB, Zhu W, Roth KA (2006) Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol 10:7–19

    Article  PubMed  Google Scholar 

  • Lovestone S, Killick R, Di Forti M (2007) Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci 30:142–149

    Article  CAS  PubMed  Google Scholar 

  • Lu XH, Dwyer DS (2005) Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 27:43–64

    Article  CAS  PubMed  Google Scholar 

  • Lu XH, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain Res 1011:58–68

    Article  CAS  PubMed  Google Scholar 

  • Lykkegaard K, Larsen PJ, Vrang N, Bock C, Bock T, Knudsen LB (2008) The once-daily human GLP-1 analog, liraglutide, reduces olanzapine-induced weight gain and glucose intolerance. Schizophr Res 103:94–103

    Article  PubMed  Google Scholar 

  • Marks JL, Porte D, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127:3234–3236

    Article  CAS  PubMed  Google Scholar 

  • Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MMB (1996) Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia 39:1392–1397

    Article  CAS  PubMed  Google Scholar 

  • Sauter A, Goldstein M, Engel J, Ueta K (1983) Effect of insulin on central catecholamines. Brain Res 260:330–333

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69:584–596

    CAS  PubMed  Google Scholar 

  • Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333(Pt 3):471–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith GC, Chaussade C, Vickers M, Jensen J, Shepherd PR (2008) Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia 51:2309–2317

    Article  CAS  PubMed  Google Scholar 

  • Smith GC, Vickers MH, Cognard E, Shepherd PR (2009) Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: implications for glucose metabolism and food choice behaviour. Schizophr Res 115:30–40

    Article  PubMed  Google Scholar 

  • Smith GC, Vickers MH, Shepherd PR (2011) Olanzapine effects on body composition, food preference, glucose metabolism and insulin sensitivity in the rat. Arch Physiol Biochem 117:241–249

    Article  CAS  PubMed  Google Scholar 

  • Ukai W, Ozawa H, Tateno M, Hashimoto E, Saito T (2004) Neurotoxic potential of haloperidol in comparison with risperidone: implication of Akt-mediated signal changes by haloperidol. J Neural Transm 111:667–681

    Article  CAS  PubMed  Google Scholar 

  • Unger J, Moss AM, Livingston JN (1991) Immunohistochemical localization of insulin receptors and phosphotyrosin in brainstem of the adult brain. Neuroscience 42:853–861

    Article  CAS  PubMed  Google Scholar 

  • van der Heide LP, Kamal A, Gispen WH, Ramakers GMJ (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-D-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94:1158–1166

    Article  PubMed  Google Scholar 

  • Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276:5256–5264

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM (2006) Insulin receptor deficiets in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 84:1–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Oakley Mental Health Research Foundation. GCS is funded by a Foundation for Research, Science and Technology Research Fellowship. HM is funded by a Maurice Wilkins Centre studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.C., McEwen, H., Steinberg, J.D. et al. The activation of the Akt/PKB signalling pathway in the brains of clozapine-exposed rats is linked to hyperinsulinemia and not a direct drug effect. Psychopharmacology 231, 4553–4560 (2014). https://doi.org/10.1007/s00213-014-3608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3608-0

Keywords

Navigation