Skip to main content

Advertisement

Log in

Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J Mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) has effects on reward-related behaviors in mice and rats that suggest that it may activate brain reward circuits. Intracranial self-stimulation (ICSS) is an operant behavioral technique that detects changes in the sensitivity of brain reward circuitry following drug administration.

Objective

To examine the effects of the neuroactive steroid allopregnanolone on ICSS and to compare these effects to those of cocaine.

Methods

Male C57BL/6J mice implanted with stimulating electrodes implanted into the medial forebrain bundle responded for reinforcement by electrical stimulation (brain stimulation reward (BSR)). Mice received cocaine (n = 11, 3.0–30.0 mg/kg, intraperitoneal (i.p.)) or the neuroactive steroid allopregnanolone (n = 11, 3.0–17.0 mg/kg, i.p.). BSR thresholds (θ 0) and maximum (MAX) operant response rates after drug treatments were compared to those after vehicle injections.

Results

Cocaine and allopregnanolone dose dependently lowered BSR thresholds relative to vehicle injections. Cocaine was maximally effective (80 % reduction) in the second 15 min following the 30 mg/kg dose, while allopregnanolone was maximally effective (30 % reduction) 15–45 min after the 17 mg/kg dose. Neither drug had significant effects on MAX response rates.

Conclusions

The effects of allopregnanolone on BSR thresholds are consistent with the previously reported effects of benzodiazepines and alcohol, suggesting that positive modulation of GABAA receptors can facilitate reward-related behaviors in C57BL/6J mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci Off J Soc Neurosci 25:11605–11613

    CAS  Google Scholar 

  • Anker JJ, Carroll ME (2010) The role of progestins in the behavioral effects of cocaine and other drugs of abuse: human and animal research. Neurosci Biobehav Rev 35:315–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anker JJ, Holtz NA, Zlebnik N, Carroll ME (2009) Effects of allopregnanolone on the reinstatement of cocaine-seeking behavior in male and female rats. Psychopharmacology 203:63–72

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MH, Ormerod BK, Jhamandas K, Boegman RJ, Beninger RJ (2000) Neurosteroids and reward: allopregnanolone produces a conditioned place aversion in rats. Pharmacol Biochem Behav 67:29–35

    Article  CAS  PubMed  Google Scholar 

  • Besheer J, Lindsay TG, O'Buckley TK, Hodge CW, Morrow AL (2010) Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 34:2044–2052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3 alpha-hydroxy-5 alpha[beta]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 561:157–161

    CAS  PubMed  Google Scholar 

  • Brinton RD (2013) Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 9:241–250

    CAS  PubMed  Google Scholar 

  • Brot MD, Akwa Y, Purdy RH, Koob GF, Britton KT (1997) The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur J Pharmacol 325:1–7

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carter RB, Wood PL, Wieland S, Hawkinson JE, Belelli D, Lambert JJ, White HS, Wolf HH, Mirsadeghi S, Tahir SH, Bolger MB, Lan NC, Gee KW (1997) Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid(A) receptor. J Pharmacol Exp Ther 280:1284–1295

    CAS  PubMed  Google Scholar 

  • Caudarella M, Campbell KA, Milgram NW (1982) Differential effects of diazepam (valium) on brain stimulation reward sites. Pharmacol Biochem Behav 16:17–21

    Article  CAS  PubMed  Google Scholar 

  • Cheer JF, Heien ML, Garris PA, Carelli RM, Wightman RM (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102:19150–19155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Concas A, Porcu P, Sogliano C, Serra M, Purdy RH, Biggio G (2000) Caffeine-induced increases in the brain and plasma concentrations of neuroactive steroids in the rat. Pharmacol Biochem Behav 66:39–45

    Article  CAS  PubMed  Google Scholar 

  • Cook JB, Dumitru AM, O'Buckley TK, Morrow AL (2014a) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    Article  CAS  PubMed  Google Scholar 

  • Cook JB, Werner DF, Maldonado-Devincci AM, Leonard MN, Fisher KR, O'Buckley TK, Porcu P, McCown TJ, Besheer J, Hodge CW, Morrow AL (2014b) Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration. J Neurosci 34:5824–5834

  • Dazzi L, Serra M, Seu E, Cherchi G, Pisu MG, Purdy RH, Biggio G (2002) Progesterone enhances ethanol-induced modulation of mesocortical dopamine neurons: antagonism by finasteride. J Neurochem 83:1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Engin E, Bakhurin KI, Smith KS, Hines RM, Reynolds LM, Tang W, Sprengel R, Moss SJ, Rudolph U (2014) Neural basis of benzodiazepine reward: requirement for alpha2 containing GABA receptors in the nucleus accumbens. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. doi:10.1038/npp.2014.41

  • Esposito R, Kornetsky C (1977) Morphine lowering of self-stimulation thresholds: lack of tolerance with long-term administration. Science 195:189–191

    Article  CAS  PubMed  Google Scholar 

  • Finn DA, Phillips TJ, Okorn DM, Chester JA, Cunningham CL (1997a) Rewarding effect of the neuroactive steroid 3 alpha-hydroxy-5 alpha-pregnan-20-one in mice. Pharmacol Biochem Behav 56:261–264

    Article  CAS  PubMed  Google Scholar 

  • Finn DA, Roberts AJ, Lotrich F, Gallaher EJ (1997b) Genetic differences in behavioral sensitivity to a neuroactive steroid. J Pharmacol Exp Ther 280:820–828

    CAS  PubMed  Google Scholar 

  • Finn DA, Mark GP, Fretwell AM, Gililland-Kaufman KR, Strong MN, Ford MM (2008) Reinstatement of ethanol and sucrose seeking by the neurosteroid allopregnanolone in C57BL/6 mice. Psychopharmacology 201:423–433

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Sekinda M, Ferrari PF, Dirks A, Miczek KA (2000) Distress vocalizations in maternally separated mouse pups: modulation via 5-HT(1A), 5-HT(1B) and GABA(A) receptors. Psychopharmacology 149:277–285

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153:473–483

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, De Bold JF, Miczek KA (2002) Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology 163:459–466

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Riday TT, McGuigan MM, Faccidomo S, Hodge CW, Malanga CJ (2010) Alcohol, cocaine, and brain stimulation-reward in C57Bl6/J and DBA2/J mice. Alcohol Clin Exp Res 34:81–89

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Krouse MC, Stringfield SJ, Diberto JF, Robinson JE, Malanga CJ (2013) Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 8:e77896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ford MM, Nickel JD, Phillips TJ, Finn DA (2005) Neurosteroid modulators of GABA(A) receptors differentially modulate ethanol intake patterns in male C57BL/6J mice. Alcohol Clin Exp Res 29:1630–1640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank RA, Martz S, Pommering T (1988) The effect of chronic cocaine on self-stimulation train-duration thresholds. Pharmacol Biochem Behav 29:755–758

    Article  CAS  PubMed  Google Scholar 

  • Frye CA, DeBold JF (1993) 3 alpha-OH-DHP and 5 alpha-THDOC implants to the ventral tegmental area facilitate sexual receptivity in hamsters after progesterone priming to the ventral medial hypothalamus. Brain Res 612:130–137

    CAS  PubMed  Google Scholar 

  • Frye CA, Bayon LE, Pursnani NK, Purdy RH (1998) The neurosteroids, progesterone and 3alpha,5alpha-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 808:72–83

    CAS  PubMed  Google Scholar 

  • Frye CA, Walf AA, Sumida K (2004) Progestins’ actions in the VTA to facilitate lordosis involve dopamine-like type 1 and 2 receptors. Pharmacol Biochem Behav 78:405–418

    Article  CAS  PubMed  Google Scholar 

  • Grobin AC, VanDoren MJ, Porrino LJ, Morrow AL (2005) Cortical 3 alpha-hydroxy-5 alpha-pregnan-20-one levels after acute administration of Delta 9-tetrahydrocannabinol, cocaine and morphine. Psychopharmacology 179:544–550

    Article  CAS  PubMed  Google Scholar 

  • Hayes DJ, Hoang J, Greenshaw AJ (2011) The role of nucleus accumbens shell GABA receptors on ventral tegmental area intracranial self-stimulation and a potential role for the 5-HT(2C) receptor. J Psychopharmacol 25:1661–1675

    Article  CAS  PubMed  Google Scholar 

  • Herberg LJ, Rose IC (1990) Excitatory amino acid pathways in brain-stimulation reward. Behav Brain Res 39:230–239

    Article  CAS  PubMed  Google Scholar 

  • Huston-Lyons D, Kornetsky C (1992) Effects of nicotine on the threshold for rewarding brain stimulation in rats. Pharmacol Biochem Behav 41:755–759

    Article  CAS  PubMed  Google Scholar 

  • Janak PH, Redfern JE, Samson HH (1998) The reinforcing effects of ethanol are altered by the endogenous neurosteroid, allopregnanolone. Alcohol Clin Exp Res 22:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Kaminski RM, Gasior M, Carter RB, Witkin JM (2003) Protective efficacy of neuroactive steroids against cocaine kindled-seizures in mice. Eur J Pharmacol 474:217–222

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31:1203–1211

    CAS  PubMed  Google Scholar 

  • Kornetsky C, Bain G (1992) Brain-stimulation reward: a model for the study of the rewarding effects of abused drugs. NIDA Res Monogr 124:73–93

    CAS  PubMed  Google Scholar 

  • Maguire EP, Macpherson T, Swinny JD, Dixon CI, Herd MB, Belelli D, Stephens DN, King SL, Lambert JJ (2014) Tonic inhibition of accumbal spiny neurons by extrasynaptic alpha4betadelta GABAA receptors modulates the actions of psychostimulants. J Neurosci Off J Soc Neurosci 34:823–838

    CAS  Google Scholar 

  • Malanga CJ, Riday TT, Carlezon WA Jr, Kosofsky BE (2008) Prenatal exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biol Psychiatry 63:214–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marx CE, Stevens RD, Shampine LJ, Uzunova V, Trost WT, Butterfield MI, Massing MW, Hamer RM, Morrow AL, Lieberman JA (2006) Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 31:1249–1263

    CAS  Google Scholar 

  • Mellon SH, Gong W, Schonemann MD (2008) Endogenous and synthetic neurosteroids in treatment of Niemann-Pick Type C disease. Brain Res Rev 57:410–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow AL (2007) Recent developments in the significance and therapeutic relevance of neuroactive steroids—introduction to the special issue. Pharmacol Ther 116:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow AL, Janis GC, VanDoren MJ, Matthews DB, Samson HH, Janak PH, Grant KA (1999) Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res 23:1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Palmer AA, Miller MN, McKinnon CS, Phillips TJ (2002) Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes. Behav Neurosci 116:126–137

    Article  CAS  PubMed  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 100:2035–2040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, Morrow AL (2014) Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology. doi:10.1007/s00213-014-3564-8

  • Porcu P, O'Buckley TK, Alward SE, Song SC, Grant KA, de Wit H, Morrow AL (2010) Differential effects of ethanol on serum GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in mice, rats, cynomolgus monkeys, and humans. Alcohol Clin Exp Res 34:432–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Blinn JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572–1581

    Article  CAS  PubMed  Google Scholar 

  • Quinones-Jenab V, Minerly AC, Niyomchia T, Akahvan A, Jenab S, Frye C (2008) Progesterone and allopregnanolone are induced by cocaine in serum and brain tissues of male and female rats. Pharmacol Biochem Behav 89:292–297

    Article  CAS  PubMed  Google Scholar 

  • Quinton MS, Gerak LR, Moerschbaecher JM, Winsauer PJ (2006) Effects of pregnanolone in rats discriminating cocaine. Pharmacol Biochem Behav 85:385–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramaker MJ, Strong MN, Ford MM, Finn DA (2012) Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration. Neuropharmacology 63:555–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16:809–817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, Krystal J, Guidotti A (2006) Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60:704–713

    Article  CAS  PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds LM, Engin E, Tantillo G, Lau HM, Muschamp JW, Carlezon WA Jr, Rudolph U (2012) Differential roles of GABA(A) receptor subtypes in benzodiazepine-induced enhancement of brain-stimulation reward. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 37:2531–2540

    Article  CAS  Google Scholar 

  • Riday TT, Dankoski EC, Krouse MC, Fish EW, Walsh PL, Han JE, Hodge CW, Wightman RM, Philpot BD, Malanga CJ (2012a) Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest 122:4544–4554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riday TT, Kosofsky BE, Malanga CJ (2012b) The rewarding and locomotor-sensitizing effects of repeated cocaine administration are distinct and separable in mice. Neuropharmacology 62:1858–1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson JE, Fish EW, Krouse MC, Thorsell A, Heilig M, Malanga CJ (2012) Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism. Psychopharmacology 220:215–224

  • Robinson JE, Chen M, Stamatakis AM, Krouse MC, Howard EC, Faccidomo S, Hodge CW, Fish EW, Malanga CJ (2013) Levetiracetam has opposite effects on alcohol- and cocaine-related behaviors in C57BL/6J mice. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 38:1322–1333

    Article  CAS  Google Scholar 

  • Romieu P, Martin-Fardon R, Bowen WD, Maurice T (2003) Sigma 1 receptor-related neuroactive steroids modulate cocaine-induced reward. J Neurosci Off J Soc Neurosci 23:3572–3576

    CAS  Google Scholar 

  • Rouge-Pont F, Mayo W, Marinelli M, Gingras M, Le Moal M, Piazza PV (2002) The neurosteroid allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens. Eur J NeuroSci 16:169–173

    Article  PubMed  Google Scholar 

  • Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988

    Article  CAS  PubMed  Google Scholar 

  • Sanna E, Talani G, Busonero F, Pisu MG, Purdy RH, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci Off J Soc Neurosci 24:6521–6530

    CAS  Google Scholar 

  • Schmoutz CD, Runyon SP, Goeders NE (2014) Effects of inhibitory GABA-active neurosteroids on cocaine seeking and cocaine taking in rats. Psychopharmacology. doi:10.1007/s00213-013-3404-2

  • Singh J, Desiraju T, Raju TR (1997) Cholinergic and GABAergic modulation of self-stimulation of lateral hypothalamus and ventral tegmentum: effects of carbachol, atropine, bicuculline, and picrotoxin. Physiol Behav 61:411–418

    Article  CAS  PubMed  Google Scholar 

  • Sinnott RS, Mark GP, Finn DA (2002a) Reinforcing effects of the neurosteroid allopregnanolone in rats. Pharmacol Biochem Behav 72:923–929

    Article  CAS  PubMed  Google Scholar 

  • Sinnott RS, Phillips TJ, Finn DA (2002b) Alteration of voluntary ethanol and saccharin consumption by the neurosteroid allopregnanolone in mice. Psychopharmacology 162:438–447

    Article  CAS  PubMed  Google Scholar 

  • Straub CJ, Carlezon WA Jr, Rudolph U (2010) Diazepam and cocaine potentiate brain stimulation reward in C57BL/6J mice. Behav Brain Res 206:17–20

    Article  CAS  PubMed  Google Scholar 

  • Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Luscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463:769–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todtenkopf MS, Parsegian A, Naydenov A, Neve RL, Konradi C, Carlezon WA Jr (2006) Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J Neurosci Off J Soc Neurosci 26:11665–11669

    CAS  Google Scholar 

  • VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL (2000) Neuroactive steroid 3alpha-hydroxy-5alpha-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci Off J Soc Neurosci 20:1982–1989

    CAS  Google Scholar 

  • Vashchinkina E, Manner AK, Vekovischeva O, den Hollander B, Uusi-Oukari M, Aitta-Aho T, Korpi ER (2014) Neurosteroid agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 39:727–737

    Article  CAS  Google Scholar 

  • Willick ML, Kokkinidis L (1995) The effects of ventral tegmental administration of GABAA, GABAB and NMDA receptor agonists on medial forebrain bundle self-stimulation. Behav Brain Res 70:31–36

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  CAS  PubMed  Google Scholar 

  • You ZB, Chen YQ, Wise RA (2001) Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation. Neuroscience 107:629–639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by AA 018335 to CJM, AA016672 to ALM, and T32-AA007573 to the Bowles Center of Alcohol Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Fish.

Additional information

A. Leslie Morrow and C.J. Malanga, senior authors, contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fish, E.W., Whitman, B.J., DiBerto, J.F. et al. Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J Mice. Psychopharmacology 231, 3415–3423 (2014). https://doi.org/10.1007/s00213-014-3600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3600-8

Keywords

Navigation