Skip to main content
Log in

The effect of quetiapine (Seroquel™) on conditioned place preference and elevated plus maze tests in rats when administered alone and in combination with (+)-amphetamine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Recent case reports describe recreational use of quetiapine and drug-seeking behaviour to obtain quetiapine, an atypical antipsychotic.

Objective

We examined the hypothesis that quetiapine (10, 20 or 40 mg/kg) alone or co-administered with (+)-amphetamine (0.25, 0.5, 0.75 or 2.0 mg/kg) will affect reward and/or decrease anxiety in rats, as measured by conditioned place preference (CPP) and elevated plus maze (EPM) test, respectively.

Results

Quetiapine (20 mg/kg) produced greater open arm time and entries in the EPM test compared to 10 and 40 mg/kg, and quetiapine (10 mg/kg) significantly increased open arm entries and time when co-administered with (+)-amphetamine (0.5 mg/kg) compared to (+)-amphetamine (0.5 mg/kg) alone, suggesting decreased anxiety. Quetiapine (10, 20 or 40 mg/kg) produced no CPP when administered alone; the lowest dose of quetiapine (10 mg/kg) reduced CPP produced by a low dose of (+)-amphetamine (0.25 mg/kg), but had no significant effect on CPP produced by a higher dose (0.5 mg/kg).

Discussion

The quetiapine-induced anxiolytic effect in the EPM might explain why humans are misusing quetiapine and combining it with (+)-amphetamine. It is possible that humans experience an anxiolytic effect of the combined drugs and relatively unaltered rewarding effects of (+)-amphetamine. The results shed some light on the question of why humans are abusing and misusing quetiapine, despite its dopamine (DA) D2 receptor antagonism; it will be the task of future studies to identify the pharmacological mechanism mediating this behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashton CH (2002). Benzodiazepine use. http://www.benzo.org.uk/ashbzab.htm. Accessed 9 Aug 2012

  • Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Baker TW, Florczynski MM, Banasikowski T (2010) Regional differences in the action of antipsychotic drugs: implications for cognitive effects in schizophrenic patients. Neurotox Res 18:229–243. doi:10.1007/s12640-010-9178-y

    Article  PubMed  CAS  Google Scholar 

  • Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice JB Jr (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68:2932–2938

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    Article  PubMed  CAS  Google Scholar 

  • Che S-SA, Menard JL (2011) Lesions of the dorsal lateral septum do not affect neophagia in the novelty induce suppression of feeding paradigm but reduce defensive behaviours in the elevated plus maze and shock probe burying tests. Behav Brain Res 220:362–366. doi:10.1016/j.bbr.2011.02.027

    Article  Google Scholar 

  • Christensen RC, Garces LK (2006) The growing abuse of commonly prescribed psychiatric medications. Am J Emerg Med 24:137–138

    Article  PubMed  Google Scholar 

  • Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121:1735–1743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dringenberg HC, de Souza-Silva MA, Schwarting RK, Huston JP (1998) Increased levels of extracellular dopamine in neostriatum and nucleus accumbens after histamine H1 receptor blockade. Naunyn Schmiedeberg’s Arch Pharmacol 358:423–429

    Article  CAS  Google Scholar 

  • Druid H, Holmgren P, Ahlner J (2001) Flunitrazepam: an evaluation of use, abuse and toxicity. Forensic Sci Int 122:136–141

    Article  PubMed  CAS  Google Scholar 

  • Erowid (2007) Erowid experience vaults. Amphetamine and benzodiazepine synergy. http://www.erowid.org/experiences/exp.php?ID=18396. Accessed 9 Aug 2012

  • Fischer BA, Boggs DL (2010) The role of antihistaminic effects in the misuse of quetiapine: a case report and review of the literature. Neurosci Biobehav Rev 34:555–558. doi:10.1016/j.neubiorev.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein AE, Gibb JW, Hanson GR (2000) Differential effects of stimulants on monoaminergic transporters: pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol 406:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gallo A, Lapointe S, Stip E, Potvin S, Rompre PP (2010) Quetiapine blocks cocaine-induced enhancement of brain stimulation reward. Behav Brain Res 208:163–168. doi:10.1016/j.bbr.2009.11.029

    Article  PubMed  Google Scholar 

  • Gao K, Sheehan DV, Calabrese JR (2009) Atypical antipsychotics in primary generalized anxiety disorder or comorbid with mood disorders. Expert Rev Neurother 9:1147–1158

  • Goldstein JM, Litwin LC, Sutton EB, Malick JB (1993) Seroquel: electrophysiological profile of a potential atypical antipsychotic. Psychopharmacology (Berl) 112:293–298

    Article  CAS  Google Scholar 

  • He J, Xu H, Yang Y, Zhang X, Li X (2005) Chronic administration of quetiapine alleviates the anxiety-like behavioural changes induced by a neurotoxic regimen of dl-amphetamine in rats. Behav Brain Res 160:178–187

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DC, Beninger RJ (1989) The effects of selective dopamine D1 or D2 receptor antagonists on the establishment of agonist-induced place conditioning in rats. Pharmacol Biochem Behav 33:273–279

    Article  PubMed  CAS  Google Scholar 

  • Jensen NH, Rodriguiz RM, Caron MG, Wetsel WC, Rothman RB, Roth BL (2008) N-Deskalkylquetiapine, a potent norepinephrine reuptake inhibitior and partial 5-HT1A agonist, as a putative mediator of quetiapine’s antidepressant activity. Neuropsychopharmacology 33:2303–2312

    Article  PubMed  CAS  Google Scholar 

  • Jones HM, Travis MJ, Mulligan R, Bressan RA, Visvikis D, Gacinovic S, Ell PJ, Pilowsky LS (2001) In vivo 5-HT2A receptor blockade by quetiapine. An R91150 single photon emission tomography study. Psychopharmacology 157:60–66

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Tauscher J, Heiden A (2001) Quetiapine: efficacy and tolerability in schizophrenia. Eur Neuropsychopharmacol 11:S405–S413

    Article  PubMed  CAS  Google Scholar 

  • Keming G, Sheehan DV, Calabrese JR (2009) Quetiapine has established anxiolytic effects in people (atypical antipsychotics in primary generalized anxiety disorder or comorbid with mood disorders. Exp Rev Neurother 9:1147–1158. doi:10.1586/ern.09.37

    Article  Google Scholar 

  • Kosten TA, Nestler EJ (1994) Clozapine attenuates cocaine conditioned place preference. Life Sci 55:9–14

    Article  Google Scholar 

  • Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526

    Article  PubMed  CAS  Google Scholar 

  • Lin HQ, Burden PM, Christie MJ, Johnston GAR (1999) The anxiogenic-like and anxiolytic-like effects of MDMA on mice in the elevated plus-maze: a comparison with amphetamine. Pharmacol Biochem Behav 62:403–408

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Ortmann R, Fibiger HC (1985) Place preference conditioning with methylphenidate and nomifensine. Brain Res 332:59–67

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Matsuo H, Takanaga H, Sasaki S, Maeda M, Sawada Y (1998) Prediction of catalepsies induced by amiodarone, aprindine and procaine: similarity in conformation of diethylaminoethyl side chain. J Pharmacol Exp Ther 287:725–732

    PubMed  CAS  Google Scholar 

  • McIntyre RS, Soczynska JK, Woldeyohannes HO, Alsuwaidan M, Konarski JZ (2009) A preclinical and clinical rationale for quetiapine in mood syndromes. Expert Opin Pharmacol 8:1211–1219

    Article  Google Scholar 

  • Mechanic JA, Maynard BT, Holloway FA (2003) Treatment with the atypical antipsychotic, olanzapine, prevents the expression of amphetamine-induced place conditioning in the rat. Prog Neuro-Psychopharmacol 27:43–54

    Article  CAS  Google Scholar 

  • Mithani S, Martin-Iverson MT, Phillips AG, Fibiger HC (1986) The effects of haloperidol on amphetamine- and methylphenidate-induced conditioned place preferences and locomotor activity. Psychopharmacology 90:247–252

    Article  PubMed  CAS  Google Scholar 

  • Murphy D, Bailey K, Stone M, Wirshing WC (2008) Addictive potential of quetiapine. Am J Psychiatr 165:918. doi:10.1176/appi.ajp.2008.08020277

    Article  PubMed  Google Scholar 

  • Nikisch G, Baumann P, Kiebling B, Reinert M, Wiedemann G, Kehr J, Mathe AA, Piel M, Roesch F, Weidder H, Schneider P, Hertel A (2010) Relationship between dopamine D2 receptor occupancy, clinical response and drug and monoamine metabolites levels in plasma and cerebrospinal fluid. A pilot study in patients suffering from first-episode schizophrenia treated with quetiapine. J Psychiatr Res 44:754–759. doi:10.1016/j.jpsychires.2010.02.004

    Article  PubMed  Google Scholar 

  • Paparrigopoulos T, Karaiskos D, Liappas J (2008) Quetiapine: another drug with potential for misuse? A case report. J Clin Psychiatry 69:162–163

    Article  PubMed  Google Scholar 

  • Pello S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–187

    Article  Google Scholar 

  • Pierre JM, Shnayder I, Wirshing DA, Wirshing WC (2004) Intranasal quetiapine abuse. Am J Psychiatr 161:1718

    Article  PubMed  Google Scholar 

  • Pifl C, Agneter E, Drobny H, Sitte HH, Singer EA (1999) Amphetamine reverses or blocks the operation of the human noradrenaline transporter depending on its concentration: superfusion studies on transfected cells. Neuropharmacology 38:157–165

    Article  PubMed  CAS  Google Scholar 

  • Pinta ER, Taylor RE (2007) Quetiapine addiction? Am J Psychiatr 164:174–175. doi:10.1176/appi.ajp.164.1.174

    Article  PubMed  Google Scholar 

  • Pisu C, Pira L, Pani L (2010) Quetiapine anxiolytic-like effect in the Vogel conflict test is serotonin dependent. Behav Pharmacol 21:649–653. doi:10.1097/FBP.0b013e32833e7eab

    Article  PubMed  CAS  Google Scholar 

  • Reeves RR, Brister JC (2007) Additional evidence of the abuse potential of quetiapine. South Med J 100:834–836

    Article  PubMed  Google Scholar 

  • Saller CF, Salama AI (1993) Seroquel: biochemical profile of a potential atypical antipsychotic. Psychopharmacology 112:285–292

    Article  PubMed  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Commeren W, Luyten WHML, Gompel PV, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982a) Cocaine-induced place preference conditioning: lack of effects of neuroleptics and 6-hydroxydopamine lesions. Brain Res 253:195–203

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982b) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 253:185–193

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Shirakawa K, Matsuoka N (2004) Combined treatment of quetiapine with haloperidol in animal models of antipsychotic effects and extrapyramidal side effects: comparison with risperidone and chlorpromazine. Psychopharmacology 176:94–100

    Article  PubMed  CAS  Google Scholar 

  • Trent NL, Menard JL (2011) Infusions of neuropeptice Y into the lateral septum reduce anxiety-related behaviors in the rat. Pharmacol Biochem Behav 99:580–590. doi:10.1016/j.pbb.2011.06.009

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7:21–26

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Segura-Torres P, Weiler T, Huston JP (1993) The tuberomammillary nucleus region as a reinforcement inhibiting substrate: facilitation of ipsihypothalamic self-stimulation by unilateral ibotenic acid lesions. Brain Res 613:269–274

    Article  PubMed  CAS  Google Scholar 

  • Wang HN, Peng Y, Tan QR, Chen YC, Zhang RG, Qiao YT, Wang HH, Liu L, Kuang F, Wang BR, Zhang ZJ (2010) Quetiapine ameliorates anxiety-like behaviour and cognitive impairments in stressed rats: implications for the treatment of posttraumatic stress disorder. Physiol Res 59:263–271

    PubMed  CAS  Google Scholar 

  • Waters BM, Joshi KG (2007) Intravenous quetiapine-cocaine use (“Q-ball”). Am J Psychiatr 164:173–174

    Article  PubMed  Google Scholar 

  • Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzales-Maeso J, Hornung J, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon S, Hen R, Gingrich JA (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviours in mice. Science 313:536–540

    Article  PubMed  CAS  Google Scholar 

  • White NM, Packard MG, Hiroi (1991) Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology 103:271–276

    Article  PubMed  CAS  Google Scholar 

  • Williams TP, Miller BD (2003) Pharmacologic management of anxiety disorders in children and adolescents. Curr Opin Paediatr 15:483–490

    Article  Google Scholar 

  • Zhornitsky S, Potvin S, Stip E, Rompre PP (2010) Acute quetiapine dose-dependently exacerbates anhedonia induced by withdrawal from escalating doses of D-amphetamine. Eur Neuropsychopharmacol 20:695–703. doi:10.1016/j.euroneuro.2010.04.011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tyson Baker and Josh Lister of the Department of Psychology, Queen’s University for their assistance in this study. Prof Richard J Beninger was funded by a grant from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew T. Martin-Iverson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLelland, A.E., Martin-Iverson, M.T. & Beninger, R.J. The effect of quetiapine (Seroquel™) on conditioned place preference and elevated plus maze tests in rats when administered alone and in combination with (+)-amphetamine. Psychopharmacology 231, 4349–4359 (2014). https://doi.org/10.1007/s00213-014-3578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3578-2

Keywords

Navigation