Skip to main content

Decision-making impairment predicts 3-month hair-indexed cocaine relapse

Abstract

Rationale

One of the key outstanding challenges in cocaine dependence research is determining who is at risk of relapsing during treatment.

Objectives

We examined whether cognitive decision-making profiles predict objectively (hair) indexed cocaine relapse at 3-month follow-up.

Methods

Thirty-three cocaine-dependent patients commencing outpatient treatment in a public clinic performed baseline decision-making assessments with the original and variant versions of the Iowa Gambling Task, and provided a 3-cm hair sample 3 months afterwards. Based on Iowa Gambling Tasks’ performance cut-offs, 5 patients had intact decision-making skills, 17 patients showed impaired sensitivity to reward or punishment (impairment in one of the tasks), and 9 patients showed insensitivity to future consequences (impairment in both tasks). Based on a 0.3 ng/mg cocaine cut-off, 23 patients were classified as relapsers and 10 as non-relapsers at the 3-month follow-up.

Results

Eighty percent of patients with intact decision-making were abstinent at follow-up, whereas 90 % of patients with insensitivity to future consequences had relapsed. The two subgroups (relapsers and non-relapsers) showed no significant differences on drug use, comorbidities, or psychosocial function, and significantly differed on verbal but not performance IQ. A regression model including decision-making scores and verbal IQ predicted abstinence status with high sensitivity (95 %) and moderately high specificity (81 %).

Conclusion

These preliminary findings demonstrate that decision-making profiles are associated with cocaine relapse. Moreover, combined decision-making and IQ assessments provide optimal predictive values over stimulant relapse, yielding significant opportunities for clinical translation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Agius R, Kintz P (2010) Guidelines for European workplace drug and alcohol testing in hair. Drug Test Anal 2:367–376

    Article  CAS  PubMed  Google Scholar 

  2. Aharonovich E, Nunes E, Hasin D (2003) Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend 71:207–211

    Article  PubMed  Google Scholar 

  3. Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV (2006) Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend 81:313–322

    Article  PubMed  Google Scholar 

  4. Aharonovich E, Amrhein PC, Bisaga A, Nunes EV, Hasin DS (2008) Cognition, commitment language, and behavioral change among cocaine-dependent patients. Psychol Addict Behav 22:557–562

    Article  PubMed Central  PubMed  Google Scholar 

  5. Albein-Urios N, Martinez-Gonzalez JM, Lozano-Rojas O, Verdejo-Garcia A (2013) Executive functions in cocaine-dependent patients with cluster B and cluster C personality disorders. Neuropsycholoy 28:84–90

    Article  Google Scholar 

  6. Alfonso JP, Caracuel A, Delgado-Pastor LC, Verdejo-Garcia A (2011) Combined goal management training and mindfulness meditation improve executive functions and decision-making performance in abstinent polysubstance abusers. Drug Alcohol Depend 117:78–81

    Article  PubMed  Google Scholar 

  7. Back SE, Hartwell K, DeSantis SM, Saladin M, McRae-Clark AL, Price KL et al (2010) Reactivity to laboratory stress provocation predicts relapse to cocaine. Drug Alcohol Depend 106:21–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bechara A, Damasio H, Damasio AR (2000a) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307

    Article  CAS  PubMed  Google Scholar 

  9. Bechara A, Tranel D, Damasio H (2000b) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123(Pt 11):2189–2202

    Article  PubMed  Google Scholar 

  10. Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–389

    Article  CAS  PubMed  Google Scholar 

  11. Bechara A, Dolan S, Hindes A (2002) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40:1690–1705

    Article  PubMed  Google Scholar 

  12. Bisaga A, Aharonovich E, Cheng WY, Levin FR, Mariani JJ, Raby WN et al (2010) A placebo-controlled trial of memantine for cocaine dependence with high-value voucher incentives during a pre-randomization lead-in period. Drug Alcohol Depend 111:97–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bissonette GB, Powell EM, Roesch MR (2013) Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 250:91–101

    Article  PubMed Central  PubMed  Google Scholar 

  14. Broos N, Diergaarde L, Schoffelmeer AN, Pattij T, De Vries TJ (2012) Trait impulsive choice predicts resistance to extinction and propensity to relapse to cocaine seeking: a bidirectional investigation. Neuropsychopharmacology 37:1377–1386

    Article  PubMed Central  PubMed  Google Scholar 

  15. Burgaleta M, Johnson W, Waber DP, Colom R, Karama S (2013) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. NeuroImage 84C:810–819

    Google Scholar 

  16. Camille N, Griffiths CA, Vo K, Fellows LK, Kable JW (2011) Ventromedial frontal lobe damage disrupts value maximization in humans. J Neurosci 31:7527–7532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Conners CK (1999) Clinical use of rating scales in diagnoses and treatment of attention deficit- hyperactivity disorder. Pediatr Clin North Americ 46:857–870

    Article  CAS  Google Scholar 

  18. Cooper GA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int 218:20–24

    Article  CAS  PubMed  Google Scholar 

  19. Crawford JR, Stewart LE, Cochrane RH, Foulds JA, Besson JA, Parker DM (1989) Estimating premorbid IQ from demographic variables: regression equations derived from a UK sample. Br J Clin Psychol 28(Pt 3):275–278

    Article  PubMed  Google Scholar 

  20. De Wilde B, Verdejo-Garcia A, Sabbe B, Hulstijn W, Dom G (2013) Affective decision-making is predictive of three-month relapse in polysubstance-dependent alcoholics. Eur Add Res 19:21–28

    Article  Google Scholar 

  21. Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN et al (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308

    Article  CAS  PubMed  Google Scholar 

  22. Dutra L, Stathopoulou G, Basden SL, Leyro TM, Powers MB, Otto MW (2008) A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 165:179–187

    Article  PubMed  Google Scholar 

  23. Fellows LK, Farah MJ (2005) Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia 43:1214–1221

    Article  PubMed  Google Scholar 

  24. First MB, Spitzer RL, Gibbon M, Williams JBW (1997) Structured Clinical Interview for DSM-IV Axis I Disorders (SCID I). Biometric Research Department, New York

    Google Scholar 

  25. Garavan H, Brennan KL, Hester R, Whelan R (2013) The neurobiology of successful abstinence. Curr Opin Neurobiol 23:668–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Garcia-Fernandez G, Secades-Villa R, Garcia-Rodriguez O, Alvarez-Lopez H, Sanchez-Hervas E, Fernandez-Hermida JR et al (2011) Individual characteristics and response to contingency management treatment for cocaine addiction. Psicothema 23:114–118

    PubMed  Google Scholar 

  27. Glascher J, Adolphs R, Damasio H, Bechara A, Rudrauf D, Calamia M et al (2012) Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc Natl Acad Sci U S A 109:14681–14686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gomez-Beldarrain M, Harries C, Garcia-Monco JC, Ballus E, Grafman J (2004) Patients with right frontal lesions are unable to assess and use advice to make predictive judgments. J Cogn Neurosci 16:74–89

    Article  PubMed  Google Scholar 

  29. Gong QY, Sluming V, Mayes A, Keller S, Barrick T, Cezayirli E et al (2005) Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. NeuroImage 25:1175–1186

    Article  PubMed  Google Scholar 

  30. Hjorthoj CR, Hjorthoj AR, Nordentoft M (2012) Validity of timeline follow-back for self-reported use of cannabis and other illicit substances—systematic review and meta-analysis. Addict Behav 37:225–233

    Article  PubMed  Google Scholar 

  31. Kaufman AS, Kaufman NL (1990) Kaufman Brief Intelligence Test. American Guidance Service, Circle Pines

    Google Scholar 

  32. Knapp WP, Soares BG, Farrel M, Lima MS (2007) Psychosocial interventions for cocaine and psychostimulant amphetamines related disorders. Cochrane Database Syst Rev CD003023

  33. Laurent V, Leung B, Maidment N, Balleine BW (2012) mu- and delta-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice. J Neurosci 32:1875–1883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ledgerwood DM, Goldberger BA, Risk NK, Lewis CE, Price RK (2008) Comparison between self-report and hair analysis of illicit drug use in a community sample of middle-aged men. Addict Behav 33:1131–1139

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lehmann E (1998). Nonparametrics—statistical methods based on ranks (Revised First Edition). San Francisco: Holden-Day Inc

  36. Lobo A, Perez-Echeverria MJ, Artal J (1986) Validity of the scaled version of the General Health Questionnaire (GHQ-28) in a Spanish population. Psychol Med 16:135–140

    Article  CAS  PubMed  Google Scholar 

  37. Loranger AW, Sartorius N, Andreoli A, Berger P, Buchheim P, Channabasavanna SM et al (1994) The International Personality Disorder Examination. The World Health Organization/Alcohol, Drug Abuse, and Mental Health Administration international pilot study of personality disorders. Arch Gen Psychiatry 51:215–224

    Article  CAS  PubMed  Google Scholar 

  38. Lutz PE, Kieffer BL (2013) The multiple facets of opioid receptor function: implications for addiction. Curr Opin Neurobiol 23:473–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. McKay JR, Foltz C, Stephens RC, Leahy PJ, Crowley EM, Kissin W (2005) Predictors of alcohol and crack cocaine use outcomes over a 3-year follow-up in treatment seekers. j Subst Abuse Treat 28(Suppl 1):S73–S82

    Article  PubMed  Google Scholar 

  40. McMahon RC (2001) Personality, stress, and social support in cocaine relapse prediction. J Subst Abuse Treat 21:77–87

    Article  CAS  PubMed  Google Scholar 

  41. Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21:7733–7741

    CAS  PubMed  Google Scholar 

  42. Nejtek VA, Kaiser KA, Zhang B, Djokovic M (2013) Iowa Gambling Task scores predict future drug use in bipolar disorder outpatients with stimulant dependence. Psychiatry Res in press.

  43. Passetti F, Clark L, Mehta MA, Joyce E, King M (2008) Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend 94:82–91

    Article  CAS  PubMed  Google Scholar 

  44. Pattij T, De Vries TJ (2013) The role of impulsivity in relapse vulnerability. Curr Opin Neurobiol 23:700–705

    Article  CAS  PubMed  Google Scholar 

  45. Paulus MP, Tapert SF, Schuckit MA (2005) Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62:761–768

    Article  PubMed  Google Scholar 

  46. Pichini S, Ventura M, Pujadas M, Ventura R, Pellegrini M, Zuccaro P et al (2004) HAIRVEQ: an external quality control scheme for drugs of abuse analysis in hair. Forensic Sci Int 145:109–115

    Article  CAS  PubMed  Google Scholar 

  47. Pirastu R, Fais R, Messina M, Bini V, Spiga S, Falconieri D et al (2006) Impaired decision-making in opiate-dependent subjects: effect of pharmacological therapies. Drug Alcohol Depend 83:163–168

    Article  CAS  PubMed  Google Scholar 

  48. Reske M, Paulus MP (2008) Predicting treatment outcome in stimulant dependence. Ann N Y Acad Sci 1141:270–283

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sofuoglu M, Waters AJ, Poling J, Carroll KM (2011) Galantamine improves sustained attention in chronic cocaine users. Exp Clin Psychopharmacol 19:11–19

    Article  PubMed Central  PubMed  Google Scholar 

  50. Streeter CC, Terhune DB, Whitfield TH, Gruber S, Sarid-Segal O, Silveri MM et al (2008) Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology 33:827–836

    Article  CAS  PubMed  Google Scholar 

  51. Studer B, Manes F, Humphreys G, Robbins TW, Clark L (2013) Risk-sensitive decision-making in patients with posterior parietal and ventromedial prefrontal cortex injury. Cereb Cortex.

  52. Turner TH, LaRowe S, Horner MD, Herron J, Malcolm R (2009) Measures of cognitive functioning as predictors of treatment outcome for cocaine dependence. J Subst Abuse Treat 37:328–334

    Article  PubMed  Google Scholar 

  53. Verdejo-Garcia AJ, Lopez-Torrecillas F, Aguilar de Arcos F, Perez-Garcia M (2005) Differential effects of MDMA, cocaine, and cannabis use severity on distinctive components of the executive functions in polysubstance users: a multiple regression analysis. Addict Behav 30:89–101

    Article  PubMed  Google Scholar 

  54. Verdejo-Garcia A, Betanzos-Espinosa P, Lozano OM, Vergara-Moragues E, Gonzalez-Saiz F, Fernandez-Calderon F et al (2012) Self-regulation and treatment retention in cocaine dependent individuals: a longitudinal study. Drug Alcohol Depend 122:142–148

    Article  CAS  PubMed  Google Scholar 

  55. Wehr A, Bauer LO (1999) Verbal ability predicts abstinence from drugs and alcohol in a residential treatment population. Psychol Rep 84:1354–1360

    Article  CAS  PubMed  Google Scholar 

Download references

Funding and disclosure

This study has been funded by the grants from the Spanish Ministry of Health: project grant COPERNICO, Drug Abuse Plan (Plan Nacional sobre Drogas Convocatoria 2009) and program grant RETICS, Carlos III Health Institute (Instituto de Salud Carlos III, Red de Trastornos Adictivos).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Verdejo-Garcia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verdejo-Garcia, A., Albein-Urios, N., Martinez-Gonzalez, J.M. et al. Decision-making impairment predicts 3-month hair-indexed cocaine relapse. Psychopharmacology 231, 4179–4187 (2014). https://doi.org/10.1007/s00213-014-3563-9

Download citation

Keywords

  • Cocaine
  • Decision-making
  • Insensitivity to future consequences
  • Hair analysis
  • Iowa Gambling Task