Abstract
Rationale
Differences in brain function in cocaine users can occur even when frank deficits are not apparent, indicating neuroadaptive consequences of use. Using monkeys to investigate altered metabolic activity following chronic cocaine self-administration allows an assessment of altered function due to cocaine use, without confounding pre-existing differences or polysubstance use often present in clinical studies.
Objectives
To evaluate alterations in metabolic function during a working memory task in the prefrontal cortex and the cerebellum following 1 year of chronic cocaine self-administration followed by a 20 month drug-free period.
Methods
Fluorodeoxyglucose (18F) PET imaging was used to evaluate changes in relative regional metabolic activity associated with a delayed match to sample working memory task. Chronic cocaine animals were compared to a control group, and region of interest analyses focused on the dorsolateral prefrontal cortex (DLPFC) and cerebellum.
Results
Despite no differences in task performance, in the cocaine group, the cerebellum showed greater metabolic activity during the working memory task (relative to the control task) compared to the control group. There was also a trend toward a significant difference between the groups in DLPFC activity (p = 0.054), with the cocaine group exhibiting lower DLPFC metabolic activity during the delay task (relative to the control task) than the control group.
Conclusion
The results support clinical indications of increased cerebellar activity associated with chronic cocaine exposure. Consistent with evidence of functional interactions between cerebellum and prefrontal cortex, these changes may serve to compensate for potential impairments in functionality of DLPFC.
Similar content being viewed by others
References
Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV (2006) Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend 81:313–322
Ashburner J, Neelin P, Collins DL, Evans A, Friston K (1997) Incorporating prior knowledge into image registration. NeuroImage 6:344–352
Beatty WW, Katzung VM, Moreland VJ, Nixon SJ (1995) Neuropsychological performance of recently abstinent alcoholics and cocaine abusers. Drug Alcohol Depend 37:247–253
Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage 19:1085–1094
Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C, Matochik J, Kurian V, Cadet J, Kimes A, Funderburk F, London E (2004) Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci 16:456–464
Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN (2008) Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry 64:998–1004
Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage 24:332–338
Connolly CG, Foxe JJ, Nierenberg J, Shpaner M, Garavan H (2012) The neurobiology of cognitive control in successful cocaine abstinence. Drug Alcohol Depend 121:45–53
Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci: Off J Soc Neurosci 27:14239–14247
Desmond JE, Fiez JA (1998) Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci 2:355–362
Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH (1997) Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci: Off J Soc Neurosci 17:9675–9685
Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV (2003) Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage 19:1510–1520
Desmond JE, Chen SH, Shieh PB (2005) Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol 58:553–560
Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–15
Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, O’Brien CP, Childress AR (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 51:134–142
Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, the nervous system, higher functions of the brain. American Physiological Society, Bethesda, pp 373–417
Gould RW, Gage HD, Nader MA (2012) Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in rhesus monkeys. Biol Psychiatry 72(10):856–863
Guide for the Care and Use of Laboratory Animals (2011) National Research Council of the National Academies, 8th edn. National Academies Press, Washington, DC
Hanlon CA, Dufault DL, Wesley MJ, Porrino LJ (2011) Elevated gray and white matter densities in cocaine abstainers compared to current users. Psychopharmacology 218:681–692
Heathcote A, Popiel SJ, Mewhort DJK (1991) Analysis of response time distributions: an example using the stroop task. Psychol Bull 109:340–347
Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci: Off J Soc Neurosci 24:11017–11022
Jedema HP, Gianaros PJ, Greer PJ, Kerr DD, Liu S, Higley JD, Suomi SJ, Olsen AS, Porter JN, Lopresti BJ, Hariri AR, Bradberry CW (2010) Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Mol Psychiatr 15:512–522
Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci: Off J Soc Neurosci 23:8432–8444
Kelley BJ, Yeager KR, Pepper TH, Beversdorf DQ (2005) Cognitive impairment in acute cocaine withdrawal. Cogn Behav Neurol: Off J Soc Behav Cogn Neurol 18:108–112
Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497
Li CS, Huang C, Yan P, Bhagwagar Z, Milivojevic V, Sinha R (2008) Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology: Off Publ Am Coll Neuropsychopharmacol 33:1798–1806
Matochik JA, London ED, Eldreth DA, Cadet JL, Bolla KI (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. NeuroImage 19:1095–1102
Mishkin M, Manning FJ (1978) Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res 143:313–323
Moeller FG, Steinberg JL, Schmitz JM, Ma L, Liu S, Kjome KL, Rathnayaka N, Kramer LA, Narayana PA (2010a) Working memory fMRI activation in cocaine-dependent subjects: association with treatment response. Psychiatry Res 181:174–182
Moeller SJ, Maloney T, Parvaz MA, Alia-Klein N, Woicik PA, Telang F, Wang GJ, Volkow ND, Goldstein RZ (2010b) Impaired insight in cocaine addiction: laboratory evidence and effects on cocaine-seeking behaviour. Brain :J Neurol 133:1484–1493
Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND, Goldstein RZ (2014) Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb Cortex 24(3):643–653
Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59
Parkins EJ (1997) Cerebellum and cerebrum in adaptive control and cognition: a review. Biol Cybern 77:79–87
Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA (2005) Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol 3:e299
Porter JN, Olsen AS, Gurnsey K, Dugan BP, Jedema HP, Bradberry CW (2011) Chronic cocaine self-administration in rhesus monkeys: impact on associative learning, cognitive control, and working memory. J Neurosci: Off J Soc Neurosci 31:4926–4934
Porter JN, Gurnsey K, Jedema HP, Bradberry CW (2013) Latent vulnerability in cognitive performance following chronic cocaine self-administration in rhesus monkeys. Psychopharmacology 226:139–146
Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations in the human brain. Science 240:1627–1631
Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain :J Neurol 129:306–320
Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain :J Neurol 121(Pt 4):561–579
Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M (1998) Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain :J Neurol 121(Pt 11):2175–2187
Smith EE, Jonides J (1997) Working memory: a view from neuroimaging. Cogn Psychol 33:5–42
Stoodley CJ (2012) The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 11:352–365
Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44:489–501
Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434
Tai C, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, Nutt RE, Cherry SR (2001) Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46:1845–1862
Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND (2007) Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res 1171:83–92
Turner TH, LaRowe S, Horner MD, Herron J, Malcolm R (2009) Measures of cognitive functioning as predictors of treatment outcome for cocaine dependence. J Subst Abus Treat 37:328–334
Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, Alpert R, Hoff A (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatr 148:621–626, See comments
Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958, See comments
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by NIH/NIDA DA025636 and VA BLR&D 1IO1BX000782
Experiments conducted herein comply with current US law.
Rights and permissions
About this article
Cite this article
Porter, J.N., Minhas, D., Lopresti, B.J. et al. Altered cerebellar and prefrontal cortex function in rhesus monkeys that previously self-administered cocaine. Psychopharmacology 231, 4211–4218 (2014). https://doi.org/10.1007/s00213-014-3560-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-014-3560-z